Electronics and Communication Engineering Department
1st Year 1st Semester Syllabus:

Theory

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HMTS1101</td>
<td>Business English</td>
<td>2 0 0 2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>CHEM1001</td>
<td>Chemistry I</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>MATH1101</td>
<td>Mathematics I</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ELEC1001</td>
<td>Basic Electrical Engineering</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>MECH1101</td>
<td>Engineering Mechanics</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Theory: 14 0 0 18 18

Laboratory / Practical

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHEM1011</td>
<td>Chemistry I Laboratory</td>
<td>0 0 3 3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ELEC1011</td>
<td>Basic Electrical Engineering Laboratory</td>
<td>0 0 3 3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>MECH1012</td>
<td>Engineering Drawing</td>
<td>1 0 3 4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>HMTS1111</td>
<td>Language Practice Laboratory (Level 1)</td>
<td>0 0 2 2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Laboratory: 1 0 11 12 8

Sessional

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HMTS1121</td>
<td>Extra curricular activities</td>
<td>0 0 2 2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Sessional: 0 0 2 2 1

Total of Semester: 15 4 13 32 27
1st Year 2nd Semester Syllabus:

Theory

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSEN1201</td>
<td>Introduction to Computing</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PHYS1001</td>
<td>Physics I</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>MATH1201</td>
<td>Mathematics II</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ECEN1001</td>
<td>Basic Electronics Engineering</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>MECH1201</td>
<td>Engineering Thermodynamics and Fluid Mechanics</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Theory 15 5 0 20 20

Laboratory

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSEN1211</td>
<td>Introduction to Computing Laboratory</td>
<td>0 0 3 3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>PHYS1011</td>
<td>Physics I Laboratory</td>
<td>0 0 3 3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>ECEN1011</td>
<td>Basic Electronics Engineering Laboratory</td>
<td>0 0 3 3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>MECH1011</td>
<td>Workshop Practice</td>
<td>1 0 3 4</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Laboratory 1 0 12 13 9

Total of Semester 16 5 12 33 29
2nd Year 1st Semester:

A. Theory

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HMTS2001</td>
<td>Human Values and Professional Ethics</td>
<td>2 0 0 2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>MATH2001</td>
<td>Mathematical Methods</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>MATH2002</td>
<td>Numerical and Statistical Methods</td>
<td>3 0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ECEN2101</td>
<td>Analog Electronic Circuits</td>
<td>3 0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ECEN2102</td>
<td>Data Structure</td>
<td>3 0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ECEN2103</td>
<td>Signals and systems</td>
<td>3 0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ECEN2105</td>
<td>Circuit Theory and Filters</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Theory</td>
<td></td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

B. Practical

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>MATH2012</td>
<td>Numerical and Statistical Methods Laboratory</td>
<td>0 0 2 2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>ECEN2111</td>
<td>Analog Electronic Circuits Laboratory</td>
<td>0 0 3 3</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>ECEN2113</td>
<td>Signals & Systems Laboratory</td>
<td>0 0 2 2</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>ECEN2112</td>
<td>Data Structure Laboratory</td>
<td>0 0 2 1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>ECEN2115</td>
<td>Circuit Theory and Filters Laboratory</td>
<td>0 0 3 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Practical</td>
<td></td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Total of Semester</td>
<td></td>
<td>34</td>
<td>29</td>
</tr>
</tbody>
</table>
2nd Year 2nd Semester:

A. Theory

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHEM2001</td>
<td>Basic Environmental Engineering and Ecology</td>
<td>3 0 0 3</td>
<td>3 3</td>
</tr>
<tr>
<td>2</td>
<td>ECEN2201</td>
<td>EM Theory & transmission line</td>
<td>3 0 0 3</td>
<td>3 3</td>
</tr>
<tr>
<td>3</td>
<td>ECEN2002</td>
<td>Digital Electronics</td>
<td>3 0 0 3</td>
<td>3 3</td>
</tr>
<tr>
<td>4</td>
<td>ECEN2203</td>
<td>Analog Communication</td>
<td>3 0 0 3</td>
<td>3 3</td>
</tr>
<tr>
<td>5</td>
<td>ECEN2204</td>
<td>Solid State Devices</td>
<td>3 0 0 3</td>
<td>3 3</td>
</tr>
<tr>
<td>6</td>
<td>PHYS2001</td>
<td>Physics-II</td>
<td>3 1 0 4</td>
<td>4 4</td>
</tr>
<tr>
<td>7</td>
<td>HMTS2002</td>
<td>Indian Culture & Heritage</td>
<td>2 0 0 2</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Total Theory

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Practical

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ECEN2211</td>
<td>EM Theory Laboratory</td>
<td>0 0 3 3</td>
<td>2 2</td>
</tr>
<tr>
<td>9</td>
<td>ECEN2012</td>
<td>Digital electronics Laboratory</td>
<td>0 0 3 3</td>
<td>2 2</td>
</tr>
<tr>
<td>10</td>
<td>ECEN2213</td>
<td>Analog communication Laboratory</td>
<td>0 0 3 3</td>
<td>2 2</td>
</tr>
<tr>
<td>11</td>
<td>PHYS2011</td>
<td>Physics-II Laboratory</td>
<td>0 0 3 3</td>
<td>2 2</td>
</tr>
<tr>
<td>12</td>
<td>HMTS2011</td>
<td>Language Practice (Level 2) Laboratory</td>
<td>0 0 3 3</td>
<td>2 2</td>
</tr>
</tbody>
</table>

Total Practical

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total of Semester

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Theory</td>
<td>21 20</td>
</tr>
<tr>
<td>Total Practical</td>
<td>15 10</td>
</tr>
<tr>
<td>Total of Semester</td>
<td>36 30</td>
</tr>
</tbody>
</table>

A. Theory

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HMTS3101</td>
<td>Economics for Engineers</td>
<td>3 0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECEN3102</td>
<td>Control Systems</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ECEN3103</td>
<td>Microelectronics & Analog VLSI Design</td>
<td>3 1 0 4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ECEN 3104</td>
<td>Microprocessors, Microcontrollers & Systems</td>
<td>3 0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ECEN3105</td>
<td>Digital Communication</td>
<td>3 0 0 3</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Theory: 17 17

B. Practical

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>ECEN3112</td>
<td>Control Systems Laboratory</td>
<td>0 0 3 3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>ECEN3113</td>
<td>Microelectronics & Analog VLSI Design Laboratory</td>
<td>0 0 3 3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>ECEN3114</td>
<td>Microprocessors, Microcontrollers & Systems Laboratory</td>
<td>0 0 3 3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>ECEN3115</td>
<td>Digital Communication Laboratory</td>
<td>3 3 2</td>
<td></td>
</tr>
</tbody>
</table>

Total Practical: 12 08

Total of Semester: 29 25
3rd Year 2nd Semester:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
</tr>
<tr>
<td>A. Theory</td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ECEN3201</td>
<td>Digital VLSI Design</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECEN3202</td>
<td>Digital Signal Processing & Applications</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Prof Elective 1</td>
<td>Theory – PE 1</td>
<td>3 1 0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Prof Elective 2</td>
<td>Theory – PE 2</td>
<td>3 1 0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>CSEN3004</td>
<td>Object Oriented Programming using C++</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>HMTS3201</td>
<td>Principles of Management</td>
<td>2 0 0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Theory</td>
<td>19 19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Practical</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ECEN3211</td>
<td>Digital VLSI Design Laboratory</td>
<td>0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>ECEN3212</td>
<td>Digital Signal Processing & Applications Laboratory</td>
<td>0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>CSEN3014</td>
<td>OOPs Laboratory</td>
<td>0 0 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>C:Sessional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ECEN3221</td>
<td>Electronic Circuit Design Laboratory</td>
<td>0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>HMTS3221</td>
<td>Personality Development</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ECEN3222</td>
<td>Seminar I</td>
<td>3 2</td>
<td></td>
</tr>
</tbody>
</table>

Total Practical	8 5
Total of Sessional	7 5
Total of Semester	34 29

Professional Elective 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN3231</td>
<td>Computer Communication & Networking</td>
</tr>
<tr>
<td>ECEN3232</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>ECEN3233</td>
<td>Real Time Embedded Systems</td>
</tr>
<tr>
<td>ECEN3234</td>
<td>Telecommunication Systems</td>
</tr>
</tbody>
</table>

Professional Elective 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN3241</td>
<td>Fiber Optic Communication</td>
</tr>
<tr>
<td>ECEN3242</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>ECEN3243</td>
<td>Antenna Design and Radar Technology</td>
</tr>
</tbody>
</table>
4th Year 1st Semester:

A. Theory

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>ECEN4101</td>
<td>RF & Microwave Engineering</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>ECEN 4102</td>
<td>Coding & Information Theory</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>ECEN 4103</td>
<td>Advanced Communication Systems</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Free Elective 1</td>
<td>Theory – FE 1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

B. Practical

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ECEN4111</td>
<td>RF & Microwave Engineering Laboratory</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>ECEN4113</td>
<td>Advanced Communication Systems Laboratory</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Practical</td>
</tr>
</tbody>
</table>

C. Sessionals

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>HMTS4121</td>
<td>Professional Development</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>ECEN4131</td>
<td>Industrial Training Evaluation</td>
<td>4 wks during 6th -7th Sem-break</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>ECEN4132</td>
<td>Seminar II</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>ECEN4191</td>
<td>Project- I</td>
<td></td>
<td>Total sessional</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total of Semester</td>
</tr>
</tbody>
</table>

Free Elective 1(for ECE students)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH4181</td>
<td>Operations Research and Optimization Techniques</td>
</tr>
<tr>
<td>CHEN4182</td>
<td>Project Management</td>
</tr>
<tr>
<td>AEIE4182</td>
<td>Introduction to Embedded Systems</td>
</tr>
<tr>
<td>INFO4182</td>
<td>Cloud Computing</td>
</tr>
<tr>
<td>CSEN4181</td>
<td>Fundamentals of Operating System</td>
</tr>
<tr>
<td>CSEN4182</td>
<td>Web Intelligence and Big Data</td>
</tr>
<tr>
<td>BIOT4181</td>
<td>Biosensors</td>
</tr>
</tbody>
</table>

Free Elective 1(offerred by ECE department)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN4181</td>
<td>VLSI Design Automation</td>
</tr>
<tr>
<td>ECEN4182</td>
<td>Control Systems</td>
</tr>
<tr>
<td>ECEN4183</td>
<td>Principles of Communication Systems</td>
</tr>
</tbody>
</table>
A. Theory

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>HMTS4201</td>
<td>Organizational Behaviour</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Free Elective 2</td>
<td>Theory – FE 2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Prof Elective 3</td>
<td>Theory – PE 3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Theory

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Sessionals

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours/Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ECEN4231</td>
<td>Comprehensive Viva Voce</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>ECEN4291</td>
<td>Project-II</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Sessional

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

Total of Semester

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Free Elective 2 (for ECE students)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEN4282</td>
<td>Total Quality Management & Assurance</td>
</tr>
<tr>
<td>AEIE4281</td>
<td>Sensor Technology</td>
</tr>
<tr>
<td>MATH4281</td>
<td>Probability and Stochastic Processes</td>
</tr>
<tr>
<td>CSEN4281</td>
<td>Fundamentals of RDBMS</td>
</tr>
<tr>
<td>CSEN4282</td>
<td>Basics of Mobile Computing</td>
</tr>
<tr>
<td>BIOT4282</td>
<td>Non-Conventional Energy</td>
</tr>
<tr>
<td>INFO4281</td>
<td>Fundamentals of Cryptography</td>
</tr>
<tr>
<td>INFO4282</td>
<td>Soft Computing Application</td>
</tr>
</tbody>
</table>

Prof Elective 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN4241</td>
<td>Remote Sensing using Satellites</td>
</tr>
<tr>
<td>ECEN4242</td>
<td>Computer Organization</td>
</tr>
<tr>
<td>ECEN4243</td>
<td>Alternative Energy Sources</td>
</tr>
</tbody>
</table>

Free Elective 2 (offered by ECE department)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN4281</td>
<td>Cellular and Satellite Communications</td>
</tr>
<tr>
<td>ECEN4282</td>
<td>VLSI Design</td>
</tr>
<tr>
<td>ECEN4283</td>
<td>VLSI Testing and Verification</td>
</tr>
</tbody>
</table>
Heritage Institute of Technology

(A Kalyan Bharti Trust Initiative)

(An Autonomous Institute under
MAKAUT)

Electronics and Communication Engineering
Department
B.TECH. PROGRAMME
SYLLABUS

RELEASE DATE: 27.06.2017
First Year, First Semester:

<table>
<thead>
<tr>
<th>Course Name</th>
<th>BUSINESS ENGLISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>HMTS1101</td>
</tr>
<tr>
<td>Contact hrs per week:</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
</tr>
<tr>
<td>Credit points</td>
<td>2</td>
</tr>
</tbody>
</table>

Module I – [5L]

Communication Skill
Definition, nature & attributes of Communication
Process of Communication
Models or Theories of Communication
Types of Communication
Levels or Channels of Communication
Barriers to Communication

Module II-[12L]

Business Communication- Scope & Importance
Writing Formal Business Letters
Writing Reports
Organizational Communication: Agenda & minutes of a meeting, notice, memo, circular
Project Proposal
Technical Report Writing
Organizing e-mail messages
E-mail etiquette
Tips for e-mail effectiveness

Module III-[10L]

Language through Literature
Modes of literary & non-literary expression
Introduction to Fiction, (An Astrologer’s Day by R.K. Narayan and Monkey’s Paw by W.W. Jacobs), Drama (The Two Executioners by Fernando Arrabal) or (Lithuania by Rupert Brooke) & Poetry (Night of the Scorpion by Nissim Ezekiel and Palanquin Bearers by Sarojini Naidu)

Module IV-[3L]

Grammar in usage (nouns, verbs, adjectives, adverbs, tense, prepositions, voice change) -to be dealt with the help of the given texts.
References

Module I [10 L]

Thermodynamics & Spectroscopy

Chemical Thermodynamics & Thermochemistry

Concept of Thermodynamic system, Introduction to first law of thermodynamics, Enthalpy Heat Capacity, Reversible and Irreversible processes, Adiabatic changes, Application of first law of thermodynamics to chemical processes, 2nd law of thermodynamics, Evaluation of entropy, Work function and free energy, Phase Changes, Clausius Clapeyron Equation, Chemical Potential, Gibbs Duhem Relation, Activity and Activity coefficient.

Spectroscopy

Electromagnetic Radiation, Basic idea of UV-visible & IR spectroscopy.

Module II [10 L]

Structure & Bonding

Chemical Bonding

Covalent bond, VSEPR Theory, Molecular Orbital Theory, Hydrogen bond, Intermolecular forces-vander Waals forces, Ionization energy, Electronegativity, Electron affinity, Hybridisation, Dipole moment

Solid State Chemistry

Introduction to stoichiometric defects (Schottky & Frenkel) and non – stoichiometric defects (Metal excess and metal deficiency). Role of silicon and germanium in the field of semiconductor.

Ionic Equilibria and Redox Equilibria

Acid Base Equilibria in water, Strength of acids and bases, Hydrogen ion exponent, Ionic product of water, Salt Hydrolysis and Henderson Equation, Buffer solutions, pH indicator, Common ion Effect, Solubility product, Fractional Precipitation, Redox Equilibria,
Structure and reactivity of Organic molecule

Inductive effect, resonance, hyperconjugation, electromeric effect, carbocation, carbanion and free radicals.
Brief study of some addition, eliminations and substitution reactions.

Module III [10 L]

Electrochemistry & Reaction Dynamics

Conductance

Conductance of electrolytic solutions, specific conductance, equivalent conductance, molar conductance, ion conductance, effect of temperature and concentration (Strong and Weak electrolyte). Kohlrausch’s law of independent migration of ions, transport numbers and hydration of ions. Conductometric titrations: SA vs SB & SA vs WB; precipitation titration KCl vs AgNO₃.

Electrochemical Cell

Cell EMF and thermodynamic derivation of the EMF of a Galvanic cell (Nernst equation), single electrode potentials, hydrogen half-cell and calomel half cell (construction, representation, cell reaction, expression of potential, discussion, application) Storage cell, fuel cell (construction, representation, cell reaction, expression of potential, discussion, application). Application of EMF measurement on a) the change in thermodynamic function (ΔG, ΔH, ΔS) b) the equilibrium constant of a reversible chemical reaction c) the valency of an ion.

Kinetics

Module IV [10 L]

INDUSTRIAL CHEMISTRY & POLYMERIZATION

Industrial Chemistry

Gaseous fuels: Natural gas, water gas, coal gas, bio gas.

Polymerization

Concepts, classifications and industrial applications. Polymer molecular weight (number avg. weight avg. viscosity avg.: Theory and mathematical expression only), Poly dispersity index (PDI). Polymerization processes (addition and condensation polymerization), degree of polymerization, Copolymerization, stereo-regularity of polymer, crystallinity (concept of T_m) and amorphicity (Concept of T_g) of polymer.

Preparation, structure and use of some common polymers: plastic (PE: HDPE, LDPE, PVC, Bakelite, PP), rubber (natural rubber, SBR, NBR) and Vulcanization., fibre(nylon 6.6, Nylon 6, Polyester).

Conducting and semi-conducting polymers.

Text Books

Reference Books

2. L. Finar, Organic Chemistry, Addison Wesley Longman, Inc
3. Organic Chemistry, Morrison & Boyd, Prentice Hall of India
4. Physical Chemistry, K. L. Kapoor, McMillan
Course Name: MATHEMATICS I
Course Code: MATH1101

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Module I [10L]

Matrix:

Matrices and their basic attributes, Determinant of a square matrix, Minors and Cofactors, Laplace’s method of expansion of a determinant, Product of two determinants, Adjoint of a determinant, Jacobi’s theorem on adjoint determinant. Singular and non-singular matrices, Adjoint of a matrix, Inverse of a non-singular matrix and its properties, Orthogonal matrix and its properties, Special Complex Matrices: Hermitian, Unitary, Normal (definition only), Rank of a matrix and its determination using elementary row and column operations, Solution of simultaneous linear equations by: Cramer’s Rule and Matrix inversion method, Consistency and inconsistency of a system of homogeneous and inhomogeneous linear simultaneous equations, Characteristic Equation and computation of eigenvalues and eigenvectors of a square matrix (of order 2 or 3), Cayley-Hamilton theorem and its applications (with special reference to higher power of matrices, e.g. Idempotent and Nilpotent matrices)

Module II [10 L]

Mean Value Theorems & Expansion of Functions:

Rolle’s theorem: its geometrical interpretation and its application, Concavity and Convexity of curves, Mean Value theorems – Lagrange & Cauchy and their application, Taylor’s theorem with Lagrange’s and Cauchy’s form of remainders and its application, Expansions of functions by Taylor’s and Maclaurin’s theorem, Maclaurin’s infinite series expansion of the functions: \(\sin x, \cos x, e^x, \log(1 + x), (a + x)^n \), \(n \) being an integer or a fraction (assuming that the remainder \(R_n \rightarrow 0 \) as \(n \rightarrow \infty \) in each case).

Infinite Series:

Preliminary ideas of sequence, Infinite series and their convergence/divergence, Infinite series of positive terms, Tests for convergence: Comparison test, Cauchy’s Root test, D’ Alembert’s Ratio test (statements and related problems on these tests), Raabe’s test, Proof of \(e \) being irrational, Alternating series, Leibnitz’s Test (statement, definition) illustrated by simple examples, Absolute convergence and Conditional convergence,
Module III [10 L]

Successive differentiation:

Higher order derivatives of a function of single variable, Leibnitz’s theorem (statement only and its application, problems of the type of recurrence relations in derivatives of different orders and also to find \((y'_n)_{0} \)).

Calculus of Functions of Several Variables:

Recapitulation of some basic ideas of limit and continuity of functions of single variable, Introduction to functions of several variables with examples, Knowledge of limit and continuity, Determination of partial derivatives of higher orders with examples, Homogeneous functions and Euler’s theorem and related problems up to three variables, Chain rules, Differentiation of implicit functions, Total differentials and their related problems, Jacobians up to three variables and related problems, Maxima, minima and saddle points of functions and related problems.

Module-IV [10 L]

Multiple Integration and Vector Calculus:

Concept of line integrals, Double and triple integrals. Vector function of a scalar variable, Differentiation of a vector function, Scalar and vector point functions, Gradient of a scalar point function, divergence and curl of a vector point function, Directional derivative, Related problems on these topics, Green’s theorem, Gauss Divergence Theorem and Stoke’s theorem (Statements and applications).

Reduction formula:

Reduction formulae both for indefinite and definite integrals of types:
\[
\int \sin^n x, \int \cos^n x, \int \sin^m x \cos^n x, \int \cos^m x \sin nx, \int \frac{dx}{(x^2 + a^2)^n}, m, n \text{ are positive integers.}
\]

References

1. Advanced Engineering Mathematics: Erwin Kreyszig by Wiley India
2. Engineering Mathematics: B.S. Grewal (S. Chand & Co.)
3. Higher Engineering Mathematics: John Bird (Elsevier)
8. Linear Algebra(Schaum’s outline series): Seymour Lipschutz, Marc Lipson (McGraw Hill Education)

10. Introduction to Real Analysis: S.K. Mapa (Sarat Book Distributors)
Module-I: [12 L]

DC Network Theorem: Kirchhoff’s law, nodal analysis, mesh analysis, Superposition theorem, Thévenin’s theorem, Norton theorem, Maximum power transfer theorem, star-delta conversion.

DC Machines: Construction, EMF equation, Principle of operation of DC generator, open circuit characteristics, external characteristics, Principle of operation of DC motor, Speed-torque characteristics of shunt and series machine, starting of DC motor, speed control of DC motor.

Module-II [8L]

Electrostatics: Gauss’s law and its applications to electric field and potential calculation. Capacitor, capacitance of parallel plate capacitor, spherical capacitor and cylindrical capacitor.

Electromagnetism: Amperes law, Biot-savart’s law, Ampere’s circuital law and their applications, Magnetic circuits, analogy between magnetic and electric circuits, Faraday’s law, self and mutual inductance. Energy stored in a magnetic field, Hysteresis and Eddy current losses.

Module-III [10L]

AC single phase system: concept of alternating signal, average and RMS values of alternating signal, peak factor, form factor, phase and phase difference, phasor representation of alternating quantities, phasor diagram, AC series, parallel and series parallel circuits, Active power, Reactive power, power factor, Resonance in RLC series and parallel circuit, Q factor, bandwidth.

Three phase system: balanced three phase system, delta and star connection, relationship between line and phase quantities, phasor diagrams. Power measurement by two wattmeter method.

Module-IV [10L]

Single phase transformer: Construction, EMF equation, no load and on load operation and their phasor diagrams, Equivalent circuit, Regulation, losses of a transformer, open and short circuit tests, efficiency.
3-phase induction motor: Concept of rotating magnetic field, principle of operation, Construction, equivalent circuit and phasor diagram, torque-speed/slip characteristics, Starting of Induction Motor.

Text Books:

2. Basic Electrical Engineering, V.N Mittle & Arvind Mittal, TMH, Second Edition
3. Basic Electrical Engineering, Hughes

Reference Books:

1. Electrical Engineering Fundamentals, Vincent Del Toro, Prentice-Hall
2. Advance Electrical Technology, H.Cotton, Reem Publication
3. Basic Electrical Engineering, R.A. Natarajan, P.R. Babu, Sictech Publishers
4. Basic Electrical Engineering, N.K. Mondal, Dhanpat Rai
5. Basic Electrical Engineering, Nath & Chakraborti
Module-I [10L]

Importance of Mechanics in Engineering; Definition of Mechanics; Concepts of particles & rigid bodies;

Vector and scalar quantities; Vector algebra – definition and notation; Types of vectors – equal, equivalent, free, bound, sliding; Addition, subtraction of vectors; Parallelogram law, triangle law, vector polygon; Scalar multiplication of vectors; Resolution of vectors in Cartesian co-ordinate system; Unit vector, unit co-ordinate vectors \((\hat{\imath}, \hat{j}, \hat{k})\); Direction cosines; Addition/subtraction of vectors in components form.

Definition of force vector; Dot product, cross product and the application; Important vector quantities (position vector, displacement vector); Moment of a force about a point and about an axis, moment of a couple; Representation of force and moments in items of \(\hat{\imath}, \hat{j}, \hat{k}\). Principle of transmissibility of force (sliding vector); Varignon’s theorem for a system of concurrent forces with proof; Resolution of a force by its equivalent force-couple system; Resultant of forces.

Module-II [10L]

Type of forces – collinear, concurrent, parallel, concentrated, distributed; Active and reactive forces, different types of reaction forces; Free body concept and diagram; Concept and equilibrium of forces in two dimensions; Equations of equilibrium; Equilibrium of three concurrent forces -- Lami’s theorem.

Concept of friction: Laws of Coulomb’s friction; Angle of friction, angle of repose, coefficient of friction -- static and kinematic.

Module-III [12L]

Distributed force system; Centre of gravity; Centre of mass & centroid; Centroid of an arc; Centroid of plane areas – triangle, circular sector, quadrilateral and composite area consisting of above figures.

Area moment of inertia: Moment of inertia of a plane figure; Polar moment of inertia of a plane figure; Parallel axes theorem.

Concept of simple stress and strain; Normal stress, shear stress, normal strain, shear strain; Hooke’s law; Poisson’s ratio; stress-strain diagram of ductile and brittle
material; Proportional limit, elastic limit, yield point, ultimate stress, breaking point; Modulus of elasticity.

Module-III [16L]

Introduction to dynamics: Kinematics & kinetics; Newton’s laws of motion; Law of gravitation and acceleration due to gravity; Rectilinear motion of particles with uniform & non–uniform acceleration.
Plane curvilinear motion of particles: Rectangular components (projectile motion), normal and tangential components.
Kinetics of particles: D’Alembert’s principle and free body diagram; Principle of work & energy; Principle of conservation of energy.
Impulse momentum theory: Conservation of linear momentum

References:

1. Engineering Mechanics:- Statics and Dynamics by Meriam & Kreige , Wiley india
2. Engineering Mechanics:- Statics and Dynamics by I.H. Shames, P H I
3. Engineering Mechanics by Timoshenko , Young and Rao , TMH
4. Element of strength of materials by Timoshenko & Young, E W P
Course Name: CHEMISTRY I LABORATORY
Course Code: CHEM 1011

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

List of Experiments:

1. To determine the alkalinity in a given water sample.
2. Estimation of iron using KMnO₄: self indicator.
3. Estimation of iron using K₂Cr₂O₇: redox sensitive indicator.
4. To determine total hardness and amount of calcium and magnesium separately in a given water sample.
5. To determine the value of the rate constant for the hydrolysis of ethyl acetate catalyzed by hydrochloric acid.
6. Heterogeneous equilibrium (determination of partition coefficient of acetic acid between n-butanol and water).
7. Conductometric titration for determination of the strength of a given HCl solution by titration against a standard NaOH solution.
8. pH-metric titration for determination of strength of a given HCl solution against a standard NaOH solution.
10. To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution)
Course Name : BASIC ELECTRICAL ENGINEERING LABORATORY

Course Code: ELEC1011

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Characteristics of Fluorescent lamps
2. Characteristics of Tungsten and Carbon filament lamps
3. Verification of Thevenin’s & Norton’s theorem.
4. Verification of Superposition theorem
5. Verification of Maximum Power Transfer theorem
6. Calibration of ammeter and voltmeter.
7. Open circuit and Short circuit test of a single phase Transformer.
8. Study of R-L-C Series / Parallel circuit
9. Starting and reversing of speed of a D.C. shunt Motor
10. Speed control of DC shunt motor.
11. No load characteristics of D.C shunt Generators
12. Measurement of power in a three phase circuit by two wattmeter method.
Course Name: Engineering Drawing
Course Code: MECH 1012

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Importance of engineering drawing; Acquaintance with different drafting equipment & accessories;
2. Introduction to lines: Practising different types of lines; Basic concepts in Lettering: Practising vertical & inclined letters (Practice Sheet 1)
3. Different systems of dimensioning with practice. Introduction to the concept of scale of drawing. (Practice Sheet 2)
4. Introduction to concept of orthographic projection: 1st angle and 3rd angle projection method; Symbols; projection of points. (Practice Sheet 3)
5. Projection of straight lines for different orientation including inclined to both the planes. (Practice Sheet 4)
6. Projection of plane surfaces inclined to HP and parallel to VP; Inclined to VP and Parallel to HP (Practice Sheet 5)
7. Projection of solids: Cube, rectangular prism, Hexagonal prism, Cylinder, Pyramid, Cone. (Practice Sheet 6)
8. Section of solids and their projections on principal and auxiliary planes for true shape: Cylinder, hexagonal pyramid. (Practice Sheet 7)
9. Isometric projections: Basic concepts, isometric scale; Isometric projection and view. Practice with simple laminar and solid objects. (Practice Sheet 8)

References:

1. “Elementary Engineering Drawing” by Bhatt, N.D; Charotan Book Stall, Anand
Course Name : Language Practice Laboratory (level 1)
Course Code: HMTS 1111

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Credit points: 1

Module I [3P]

Introduction to Linguistics (Phonology)
Phonetics-Vowel and Consonant Sounds (Identification &articulation)
Word- stress
Intonation (Falling and rising tone)
Voice Modulation
Accent training

Module II [3P]

Listening Skills
Principles of Listening
Approaches to listening
Guidelines for Effective Listening
Listening Comprehension
Audio Visual (Reviews)

Module III [2P]

Discourse Analysis-
Spoken Discourse
Conversational Skills/Spoken Skills
Analysing Speech dynamics
(Political Speeches
Formal Business Speeches)

Module IV [9P]

Writing Skill-
Descriptive, narrative and expository writing
Writing with a purpose---Convincing skill, argumentative skill/negotiating Skill (These skills will be repeated in oral skills).
Writing reports/essays/articles—logical organization of thoughts
Book review
References

Objective: This course aims at instilling a sense of social responsibility. This objective can be achieved by bringing in awareness about the contemporary issues relevant to the GenX and Gen Y through enlightened discussions and active participation. Since the course has 1 credit detailed planning regarding the area of activities and method of evaluation should be charted at the start of the semester.

Module I:

Project Work
Development of projects based on integral and holistic developmental models to be implemented in rural areas or underdeveloped areas in the peripheral areas of cities. This could include a wide area of activity – from taking up a research projects to analyse the need of a particular under-developed area to trying to implement a project already formulated. This could also relate to mobilizing funds for a specific project.

Module II:

Action-oriented schemes

 e.g. Organising Blood donation camps
 Conducting child – healthcare services
 Helping the old and sick
 (in coordination with NGOs and other institutes)

Module III:

Society and Youth

Developing Awareness among the youth about social issues both local and global for e.g. Eradication of social evils like drug abuse, violence against women and others.

Module IV:

Youth and Culture

Generating new ideas and help the participants to be creative and innovative for e.g. Enacting street plays, encouraging creative writing by organizing workshops and competitions. Active participation of the students in the nation building process by making positive changes in the social and individual space.
Learning Objective: Introduction to the concept of computer and computation and solving of problems using C as a programming language. Coverage of C will include basic concepts, arithmetic and logic, flow control, and data handling using arrays, structures, pointers and files.

Module I: [13L]

Fundamentals of Computer

Basic Anatomy of Computer System, Primary & Secondary Memory, Processing Unit, Input & Output devices. Assembly language, high level language, compiler and assembler (basic concepts).

Binary & Allied number systems (decimal, octal and hexadecimal) with signed and unsigned numbers (using 1’s and 2’s complement) - their representation, conversion and arithmetic operations. Packed and unpacked BCD system, ASCII. IEEE-754 floating point representation (half- 16 bit, full- 32 bit, double- 64 bit). Binary Arithmetic & logic gates. Boolean algebra – expression, simplification, Karnaugh Maps.

Basic concepts of operating systems like MS WINDOW, LINUX. How to write algorithms & draw flow charts.

Module II: [5L]

Basic Concepts of C

C Fundamentals:

The C character set identifiers and keywords, data type & sizes, variable names, declaration, statements.

Operators & Expressions:

Arithmetic operators, relational and logical operators, type, conversion, increment and decrement operators, bit wise operators, assignment operators and expressions, precedence and order of evaluation. Standard input and output, formatted output -- printf, formatted input scanf.
Module III: [8L]

Program Structures in C

Flow of Control:

Statement and blocks, if-else, switch-case, loops (while, for, do-while), break and continue, go to and labels.

Basic of functions, function prototypes, functions returning values, functions not returning values. Storage classes - auto, external, static and register variables – comparison between them. Scope, longevity and visibility of variables.

C preprocessor (macro, header files), command line arguments.

Module IV: [14L]

Data Handling in C

Arrays and Pointers:

One dimensional arrays, pointers and functions – call by value and call by reference, array of arrays. Dynamic memory usage– using malloc(), calloc(), free(), realloc(). Array pointer duality.

String and character arrays; C library string functions and their use.

User defined data types and files:

Basic of structures; structures and functions; arrays of structures.

Files – text files only, modes of operation. File related functions – fopen(), fclose(), fscanf(), fprintf(), fgets(), fputs();

Text Books

1. Schaum’s outline of Programming with C – Byron Gottfried
2. Teach Yourself C- Herbert Schildt
3. Programming in ANSI C – E Balagurusamy

Reference Books

1. C: The Complete Reference – Herbert Schildt
2. The C Programming Language- D.M.Ritchie, B.W. Kernighan
Module I: [22 L]

Optics

1. Interference:

The principle of superposition of waves, Superposition of waves: Two beam superposition, Multiple-beam superposition, coherent and incoherent superposition. Two source interference pattern (Young’s double slit), Intensity distribution. Interference in thin films, wedge shaped films and Newton’s rings, applications of interference. Newton’s rings: Determination of wavelength of light, refractive index of liquid.

2 Diffraction:

Diffraction of light waves at some simple obstacles. Fraunhofer diffraction through double slit and diffraction grating, grating spectra, resolving power of grating.

3. Polarisation & Fibre Optics:

Elementary features of polarization of light waves. Production and analysis of linearly, elliptic and Circularly polarized light, polaroids and application of polarizations. fibre optics - principle of operation, numerical aperture, acceptance angle

4 Laser

Module II: [8L]

Waves & Oscillation

Module III : [9L]

Quantum Mechanics

Module IV: [6L]

Introduction of Crystallography

Text Books

1. Atomic Physics Vol 1 – S.N. Ghoshal
2. Optics – Ajoy Ghak
3. Waves & Oscillation – N.K. Bajaj

Reference Books

1. Introduction to Special Relativity – Robert Resnick
2. Prespective on Modern Physics - Arthur Beiser
3. Optics – Jenkins and White
5. Introduction to modern Physics – Mani and Meheta
6. Optics – Brijlal and Subrahmanyam
Course Name : Mathematics II
Course Code: MATH1201

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Module I [10 L]

Ordinary differential equations (ODE)-

First order and first degree: Exact equations, Necessary and sufficient condition of exactness of a first order and first degree ODE (statement only), Rules for finding Integrating factors, Linear and non-linear differential equation, Bernoulli’s equation. General solution of ODE of first order and higher degree (different forms with special reference to Clairaut’s equation).

Second order and first degree:

Module II:[10L]

Basics of Graph Theory

Graphs, Digraphs, Weighted graph, Connected and disconnected graphs, Complement of a graph, Regular graph, Complete graph, Subgraph; Walks, Paths, Circuits, Euler Graph, Cut sets and cut vertices, Matrix representation of a graph, Adjacency and incidence matrices of a graph, Graph isomorphism, Bipartite graph.

Tree:

Definition and properties, Binary tree, Spanning tree of a graph, Minimal spanning tree, properties of trees, Algorithms: Dijkstra’s Algorithm for shortest path problem, Determination of minimal spanning tree using DFS, BFS, Kruskal’s and Prim’s algorithms.
Module III [10L]

Improper Integral:

Basic ideas of improper integrals, working knowledge of Beta and Gamma functions (convergence to be assumed) and their interrelations.

Laplace Transform:

Introduction to integral transformation, functions of exponential order, Definition and existence of LT (statement of initial and final value theorem only), LT of elementary functions, Properties of Laplace Transformations, Evaluation of sine, cosine and exponential integrals using LT, LT of periodic and step functions Definition and properties of inverse LT Convolution Theorem (statement only) and its application to the evaluation of inverse LT, Solution of linear ODEs with constant coefficients (initial value problem) using LT.

Module IV [10L]

Three Dimensional Geometry

Canonical equation of the line of intersection of two intersecting planes. Angle between two lines. Shortest distance between two lines. Condition of coplanarity of two lines. Length of the perpendicular from a point to a given line.

References:

2. Graph Theory: V. K. Balakrishnan, (Schaum’s Outline, TMH)
3. A first course at Graph Theory: J. Clark and D. A. Holton (Allied Publishers LTD)
4. Introduction to Graph Theory: D. B. West (Prentice-Hall of India)
5. Graph Theory: N. Deo (Prentice-Hall of India)
10. Introductory Course in Differential Equations: Daniel A. Murray (Longmans & Green).
12. Analytical Geometry And Vector Algebra- R M Khan
Course Name: Basic Electronics Engineering

<table>
<thead>
<tr>
<th>Course Code: ECEN1001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact hrs per week:</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Module I [10 L]

Semiconductors:
Crystalline material, Energy band theory, Fermi levels; Conductors, Semiconductors and Insulators: electrical properties, band diagrams. Semiconductors: intrinsic and extrinsic, energy band diagram, electrical conduction phenomenon, P-type and N-type semiconductors, drift and diffusion carriers.

Diodes and Diode Circuits:
Formation of P-N junction, energy band diagram, built-in-potential forward and reverse biased P-N junction, formation of depletion zone, V-I characteristics, Zener Diode and its Application, Zener and Avalanche breakdown.
Simple diode circuits, load line, piecewise linear model; Rectifier circuits: half wave, full wave, PIV, DC voltage and current, ripple factor, efficiency, idea of regulation.

Module II [10 L]

Bipolar Junction Transistors:
Formation of PNP / NPN junctions, energy band diagram; transistor mechanism and principle of transistors, CE, CB, CC configuration, transistor characteristics: cut-off, active and saturation modes of operation, transistor action, input & output characteristics, load line & amplifier operation and current amplification factors for CB and CE modes. Biasing and Bias stability: calculation of stability factor.

Module III [9 L]

Field Effect Transistors:
Junction field effect transistor (JEET): Principle of operation, JFET parameters, eqv. Circuit, JFET biasing, self bias, design of bias circuits, load line, amplifier characteristics.
MOSFETs:

Construction & principle of operation of p- & n-channel enhancement & depletion mode MOSFETs, drain & transfer characteristics, threshold voltage & its control.

Cathode Ray Oscilloscope:

Construction and working principle of CRO, Lissajous pattern.

Module IV [9 L]

Feed Back Amplifier:

Concept-block diagram, properties, positive and negative feedback, loop gain, open loop gain, feedback factors; topologies of feedback amplifier; effect of feedback on gain, condition of oscillation, Barkhausen criteria.

Operational Amplifier:

Introduction to integrated circuits, operational amplifier and its terminal properties; Application of operational amplifier; Concept of op-amp saturation, inverting and non-inverting mode of operation, Adders, Subtractors, Voltage follower, Integrator, Differentiator, Basic Comparator Circuit.

References:

2. R.A Gayakwad: Op Amps and Linear IC’s, PHI
4. Adel S. Sedra, Kenneth Carless Smith: Microelectronics Engineering
Module I [10 L]

Basic concepts of Thermodynamics:

Introduction; Macroscopic and microscopic concept; Definition of Thermodynamic systems; Surrounding, universe; Open, closed and isolated systems; Concept of control volume; Thermodynamic properties: intensive, extensive & specific properties; state.

Thermodynamic equilibrium; Change of state; Thermodynamic processes and cycles; Quasi-static processes; Reversible processes; Zeroth law of Thermodynamics - concept of temperature.

Heat & Work:

Definition of Thermodynamic work; Work transfer-displacement work for a simple compressible system, path function, PdV work in various quasi-static processes (isothermal, isobaric, adiabatic, polytropic, isochoric); Free expansion; Indicated diagram (P-V diagram).

Definition of heat; Heat transfer-a path function; Similarities and dissimilarities between heat and work.

Module II [8 L]

First law of Thermodynamics: Statement; 1st law for a closed system executing a cycle; Concept of stored energy; Energy as a property, different forms of stored energy, internal energy, first law for a non-flow process; Flow work; Definition of enthalpy, Cp, Cv; Energy of an isolated system; Flow energy; First law for an open system - steady flow energy equation; Examples of steady flow devices (nozzle and diffuser, turbine, pump, compressor, boiler, condenser and throttling device); PMM-I

Module III [10 L]

Second law of Thermodynamics:

Qualitative difference between heat and work; Definition of source & sink: cyclic heat engine, heat pump and refrigerator, thermal efficiency of heat engine, C.O.P of heat pump and refrigerator; Kelvin-Plank and Clausius statements of second law; Equivalence of the two statements.
Reversible process; Irreversible process; Factors for irreversibility; Carnot cycle and Carnot efficiency; Reversible heat engine and heat pump; PMM-II

Entropy: Mathematical statement of Clausius Inequality: Entropy as a property; Entropy principle; T-s plot for reversible isothermal, adiabatic, isochoric & isobaric processes.

Air standard Cycles:

Otto cycle & Diesel cycle, P-V & T-s plots, Net work done and thermal efficiency.

Module IV [10 L]

Properties & Classification of Fluid:

Definition of fluid; Concept of Continuum; Fluid properties- density, specific weight, specific volume, specific gravity; Viscosity : definition , causes of viscosity , Newton's law of viscosity, dimensional formula and units of viscosity, kinematic viscosity; Variation of viscosity with temperature. Ideal and Real fluids; Newtonian and Non-Newtonian fluids; No-slip condition. Compressibility and Bulk modulus of elasticity. Difference between compressible and incompressible fluids.

Fluid Statics:

Introduction; Pascal’s Law--statement and proof; Basic Hydrostatic Law and its proof; Variation of pressure with depth in incompressible fluid, piezometric head, pressure head; Unit and scales of pressure measurement. Measurement of fluid pressure: Piezometer, Manometers -Simple and Differential U-tube manometer, Inverted tube manometer, Inclined tube manometer. Characteristics and choice of manometric fluid.

Module V [10 L]

Fluid Kinematics:

Definition; Flow field and description of fluid motion(Eulerian & Lagrangian method), steady and unsteady flow, uniform and non-uniform flow-examples. Acceleration of a fluid particle-local acceleration, convective acceleration. Stream line, Stream tube, Path line and Streak line; Laminar and Turbulent flow, Reynolds Number. Equations of streamlines and path lines. Continuity equation for unidirectional flow and for differential form in 3-D Cartesian coordinate system.

Dynamics of Ideal fluids:
Introduction, Euler’s equation of motion along a streamline; Bernoulli’s equation-assumptions and significance of each term of Bernoulli’s equation.

Application of Bernoulli’s equation-problem on pipe line. Measurement of flow rate: Venturimeter and orificemeter.

Static pressure, Dynamic pressure, Stagnation pressure-measurement of velocity by Pitot tube.

References:

1. Engineering Thermodynamics- Nag, P.K. - T. M.H
2. Fundamentals of Thermodynamics- Sonntag, Borgnakke & Van Wylen, Wiley India
3. Thermodynamics- an Engineering approach - 6e, Cengel & Boles, TM
Course Name: Introduction to Computing Laboratory
Course Code: CSEN1211

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Basic Computation & Principles of Computer Programming Laboratory

Softwares to be used: Cygwin and notepad++, Tiny C

Day 1: LINUX commands and LINUX based editor
Day 2: Basic Problem Solving
Day 3: Control Statements (if, if-else, if-elseif-else, switch-case)
Day 4: Loops - Part I (for, while, do-while)
Day 5: Loops - Part II
Day 6: One Dimensional Array
Day 7: Array of Arrays
Day 8: Character Arrays/ Strings
Day 9: Basics of C Functions
Day 10: Recursive Functions
Day 11: Pointers
Day 12: Structures and Unions
Day 13: File Handling
Course Name: PHYSICS I Laboratory
Course Code: PHYS 1011

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Determination of Young’s modulus by Flexure Method and calculation of bending moment and shear force at a point on the beam.
3. Determination of thermal conductivity of a good conductor by Searle’s Method.
4. Determination of thermal conductivity of a bad conductor by Lee’s and Chorlton’s Method.
5. Determination of dielectric constant of a given dielectric material.
6. Use of Carey Foster’s bridge to determine unknown resistance.
8. Determination of wavelength of light by Fresnel’s biprism method.
10. Determination of dispersive power of the material of a given prism.
11. Determination of co-efficient of viscosity of a liquid by Poiseulle’s capillary flow method.
Course Name: Basic Electronics Engineering Laboratory

Course Code: ECEN1011

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

List of Experiments

1. Familiarisation with passive and active electronic components such as Resistors, Inductors, Capacitors, Diodes, Transistors (BJT) and electronic equipment like DC power supplies, multimeters etc.
2. Familiarisation with measuring and testing equipment like CRO, Signal generators etc.
3. Study of I-V characteristics of Junction diodes.
4. Study of I-V characteristics of Zener diodes.
5. Study of Half and Full wave rectifiers with Regulation and Ripple factors.
6. Study of I-V characteristics of BJTs in CB mode
7. Study of I-V characteristics of BJTs in CE mode
8. Study of I-V characteristics of Field Effect Transistors.
9. Determination of input-offset voltage, input bias current and Slew rate of OPAMPs.
10. Determination of Common-mode Rejection ratio, Bandwidth and Off-set null of OPAMPs.
Course Name: Workshop Practice

Course Code: MECH1011

<table>
<thead>
<tr>
<th>Contact week:</th>
<th>hrs per</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Job 1: General awareness of a typical workshop.

Theory requirements: Workshop definition, various shops in a typical workshop, Carpentry, Fitting, Foundry; Sheet Metal Shop, Welding and Brazing Shop, Machine Shop, Forging & Blacksmithy, Safety precautions to be followed in a workshop, Familiarization of Various safety devices and their uses.

Job 2: Making of a wooden pattern.

Job 3: Making of a matched profile form MS plate.

Theory requirements: Work Bench, Fitting Tools (Bench Vice, Chisel, Hammer, Different types of Files, (Rough, Bastard, Second Cut, Half Round, Triangular File), Saw (Hack saw etc.), Scriber, Punch, Try Square, Angle Plate, caliper (outside & inside), Universal Surface Gauge, Centre Punch, Prick Punch, Drill (Flat, straight fluted, taper shank twist drill).

Fitting Operations, Filing, Marking, Drilling, Tapping (Rougher, Intermediate, Finisher taps), Tap Drill size (D=T-2d), Sawing, Dieing. Safety precautions in Fitting Shop.

Job 4: Making of an internal and external thread.

Theory requirements: Thread standards and thread classifications, Internal Thread, External Thread, Thread Nomenclature (Major dia, Minor dia, Pitch dia, pitch, Lead, TPI, Metric, BSP, Nominal size), Specifications of threaded fasteners (in Metric System). Safety precautions in Dieing and Tapping.

Job 5: Making of a green sand mould using the pattern made under Job no. 2.

Theory requirements: Mould making, Preparation of sand, (silica, clay, moisture, and misc items and their functions), Properties of a good sand mould, General procedure for making a good sand mould, Different tools used for preparation of a mould, Explanation of various terms, Cope and Drag Box, Runner, Riser, Gating and its utility, Parting sand, Vent holes.

Job 6: Demonstration of metal melting and casting

Theory requirements: Metal melting furnaces: Ladles, Using of Tongs, Molten metal pouring procedure, Safety precautions in pouring molten metal in a mould.

Job 7. Making of a stepped pin in a centre lathe. (2 Classes)
Theory requirements: Machining and common machining operations, Lathe M/c and its specifications, Head stock, Tailstock, Chuck-Self centering chuck, 4 jaw chuck, Bed, Carriage, Feed mechanism, Screw cutting mechanism, various lathe operations like turning, facing, grooving, chamfering, taper turning, Thread cutting, Knurling, Parting, Cutting speed, Feed, Depth of cut, Different types of cutting tools-Safety precautions in a machine shop.

Job 8: Making of square prism from a round shaft by Shaping Machine

Theory requirements: Description of a Shaping machine, Base, Column, Saddle, Clapper box, Quick return mechanism, Feed Mechanism, Table, Rotation of table, Adjustment of stroke length, Adjustment of starting point of cut. Safety Precautions while working in Shaping Machine.

Job 9: Making of square prism from a round shaft by Milling Machine

Job 10: Arc Welding practice and making of a welded joint

Theory requirements: Welding, Weldability, Types of Welding, MMAW, Gas Welding, Electrode, Functions of Flux, Equipment for MMAW, Different types of Flames in Gas Welding and Gas Cutting (Neutral-Oxidising-Reducing Flames), Different types of welding joints, AC Welding, DC Welding; Safety precautions in Welding Shop.

Job 11: Sheet Metal forming & Brazing

References:

2nd Year 1st Semester (B.Tech)

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Human Values and Professional Ethics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>HMTS-2001</td>
</tr>
<tr>
<td>Contact Hours per week</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Course outcomes:
1. Importance of values in life
2. Ethics and its power
3. Ecological balance-our responsibility

Module I

Human society and the Value System
Values: Definition, Importance and application.
Formation of Values: The process of Socialization
 Self and the integrated personality
 Morality, courage, integrity

Types of Values:
Social Values: Justice, Rule of Law, Democracy, Indian Constitution, Secularism
Aesthetic Values: Perception and appreciation of beauty
Organizational Values: Employee: Employer--- rights, relationships, obligations
Psychological Values: Integrated personality and mental health
Spiritual Values &their role in our everyday life
Value Spectrum for a Good Life, meaning of Good Life

Value Crisis in Contemporary Society
Value crisis at----
Individual Level
Societal Level
Cultural Level
Value Crisis management --- Strategies and Case Studies

Module II

Ethics and Ethical Values
Principles and theories of ethics
Consequential and non-consequential ethics
Egotism, Utilitarianism, Kant's theory and other non-consequential perspectives
Ethics of care, justice and fairness, rights and duties

Ethics—Standardization
 Codification
 Acceptance
 Application

Types of Ethics—Ethics of rights and Duties
 Ethics of Responsibility
 Ethics and Moral judgment
 Ethics of care
 Ethics of justice and fairness

Work ethics and quality of life at work

Professional Ethics
Ethics in Engineering Profession;
moral issues and dilemmas, moral autonomy (types of inquiry)
Kohlberg's theory, Giligan's theory (consensus and controversy)
Code of Professional Ethics
Sample Code of ethics like ASME, ASCE, IEEE, Institute of Engineers, Indian Institute of materials management, Institute of Electronics and telecommunication engineers
Violation of Code of Ethics—conflict, causes and consequences
Engineering as social experimentation, engineers as responsible experimenters (computer ethics, weapons development)
Engineers as managers, consulting engineers, engineers as experts, witnesses and advisors, moral leadership
Conflict between business demands and professional ideals
social and ethical responsibilities of technologies.

Whistle Blowing: Facts, contexts, justifications and case studies

Ethics and Industrial Law
Institutionalizing Ethics: Relevance, Application, Digression and Consequences

Module III

Science, Technology and Engineering
Science, Technology and Engineering as knowledge and profession
 Definition, Nature, Social Function and Practical application of science
Rapid Industrial Growth and its Consequences
Renewable and Non-renewable Resources: Definition and varieties
Energy Crisis
Industry and Industrialization
Man and Machine interaction
Impact of assembly line and automation
Technology assessment and Impact analysis
Industrial hazards and safety
Safety regulations and safety engineering
Safety responsibilities and rights
Safety and risk, risk benefit analysis and reducing risk
Technology Transfer: Definition and Types
The Indian Context

Module IV

Environment and Eco-friendly Technology
Human Development and Environment
Ecological Ethics/Environment ethics
Depletion of Natural Resources: Environmental degradation
Pollution and Pollution Control
Eco-friendly Technology: Implementation, impact and assessment

Sustainable Development: Definition and Concept
 Strategies for sustainable development
 Sustainable Development--- The Modern Trends

Appropriate technology movement by Schumacher and later development
Reports of Club of Rome.

Suggested Readings:

1) Tripathi, A.N., Human Values, New Age International, New Delhi, 2006
Course Name: MATHEMATICAL METHODS
Course Code: MATH 2001

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Outcome:
After completing the course the student will be able to:
1. Synthesize components of a physical phenomenon and consequently construct a mathematical model of the system.
2. Classify engineering problems like forced oscillations, RLC Circuits etc.
3. Apply suitable analytic methods to solve wave equations, heat conduction equation.
4. Evaluate the efficiency of a method to solve ordinary and partial differential equations.

Module I: Functions of Complex Variables (12L)
Complex numbers and its geometrical representation.
Functions of a complex variable – Limits, Continuity, Differentiability.
Analytic Functions, Cauchy-Riemann equations, Necessary and sufficient conditions for analyticity of complex functions (Statement only), Harmonic functions.
Line Integral on complex plane, Cauchy-Goursat theorem, Cauchy’s Integral Formula.
Taylor’s and Laurent’s series expansion.
Zeros, Different types of Singularities. Definitions of poles and residues, Residue Theorem, Evaluation of real integrals using residue theorem.

Module II: Fourier Series, Integrals and Transforms (12L)
Definite Integral, Orthogonality of Trigonometric Functions, Power Series and its convergence.
Periodic Functions, Even and Odd Functions, Dirichlet’s Conditions, Euler Formulas for Fourier coefficients, Fourier series representation of a function, e.g. Periodic square wave, Half wave rectifier, Unit step function.
Half Range series, Parseval’s Identity.
Fourier Integral theorem, Fourier transform, Fourier sine and cosine transform, Linearity, Scaling, Frequency Shifting and Time shifting properties, Convolution Theorem.
Discussion of some physical problems: e.g Forced oscillations.

Module III: Series solutions to Ordinary Differential equations and Special Functions (12L)
Series solution of ODE: Ordinary point, Singular point and Regular Singular point, series solution when \(x = a \) is an ordinary point, Frobenius method.
Legendre’s Equation, Legendre’s polynomials and its graphical representation.
Bessel’s equation, Bessel’s function of first kind and its graphical representation.
Finite Difference Method and its application to Boundary Value Problem.

Module IV: Partial Differential Equations (12L)
Second order partial differential equations with constant coefficients, Illustration of wave equation, one dimensional heat equation, Laplace’s equation, Boundary value problems and their solution by the method of separation of variables.
Solution of Boundary value problems by Laplace and Fourier transforms.

Suggested Books:

1. Complex Variables and Applications
 Brown Churchill
 MC Graw Hill

2. Complex Variable
 Murrey R. Spiegel
 Schaum’s Outline Series

3. Theory of Functions of a Complex Variable
 Shanti Narayan, P. K. Mittal
 S. Chand

4. Larry C. Andrew, B. K. Shivamoggi
 Integral Transforms for Engineers and Applied Mathematicians
 Macmillan

5. Fourier Analysis with Boundary Value Problem
 Murrey R. Spiegel
 Schaum’s Outline Series

6. Mathematical Methods
 Potter, Merle C., Goldberg, Jack.
 PHI Learning

7. Ordinary and Partial Differential Equations
 M. D. Raisinghania
 S. Chand

8. Elements of Partial Differential Equation
 Ian Naismith Sneddon
 Dover Publications

9. Advanced Engineering Mathematics
 Kreyszig
 Willey

 B. V. Ramana
 Tata McGraw-Hill
Course Name : NUMERICAL AND STATISTICAL METHODS
Course Code : MATH2002

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcome: After completing the course students will be able to

(i) Apply numerical methods to obtain approximate solutions to mathematical problems where analytic solutions are not possible.

(ii) Develop algorithmic solutions for problems like system of linear equations, integration, ordinary differential equations which are pertinent to many physical and engineering problems.

(iii) Apply probabilistic methods to engineering problems where deterministic solutions are not possible.

(iv) Analyze probability distributions required to quantify phenomenon whose true value is uncertain.

(v) Find numerical solutions to algebraic and transcendental equations appearing in a vast range of engineering problems e.g in the study of Ideal and non ideal gas laws, pipe friction, design of electric circuits.

(vi) Apply numerical methods to find solutions to linear system of equations appearing in spring-mass systems, resistor circuits, steady state analysis of a system of reactors.

(vii) Solve problems in data analysis, least-cast treatment of wastewater where the knowledge of interpolation will be required.

(viii) Compute numerical solution to integrals to find root mean square current.

MODULE-I – NUMERICAL SOLUTION TO LINEAR AND NON-LINEAR EQUATIONS (8L)

SOLUTION OF NON-LINEAR ALGEBRAIC EQUATIONS AND TRANSCENDENTAL EQUATIONS:
Bisection Method, Newton-Raphson Method, Regula-Falsi Method.

SOLUTION OF LINEAR SYSTEM OF EQUATIONS:
Gauss elimination method, Gauss-Seidel Method, LU Factorization Method.

MODULE-II – NUMERICAL SOLUTION TO INTEGRATION AND ORDINARY DIFFERENTIAL EQUATIONS (8L)

INTERPOLATION AND INTEGRATION:
Newton’s Forward and Backward Interpolation Method, Lagrange’s Interpolation, Trapezoidal and Simpson’s 1/3rd Rule.

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS:
Euler’s and Modified Euler’s Method, Runge-Kutta Method of 4th order.

MODULE-III – FUNDAMENTALS OF PROBABILITY (5L)

Prerequisites- Set Theory.
Random experiment, Sample space, Events.
Definition of Probability,
Addition law of probability, Multiplication law and Conditional Probability.
Bayes’ Theorem (Statement only)

MODULE-IV – PROBABILITY DISTRIBUTIONS AND STATISTICS (15L)

Special Distributions: Binomial, Poisson, Uniform, Exponential and Normal.
Measures of Central Tendency and Dispersion – Mean, Median, Mode and Standard Deviation for grouped and ungrouped frequency distribution.
Simple Correlation and Regression.

Suggested Books:

1. Miller & Freund's Probability and Statistics for Engineers
 R.A.Johnson
 Prentice Hall of India

2. Numerical Mathematical Analysis
 J.B.Scarborough

3. Numerical Methods (Problems and Solution)
 Jain, Iyengar, & Jain
 New Age International Publishers

4. Fundamentals of Mathematical Statistics
S.C. Gupta and V.K. Kapoor
Sultan Chand & Sons

5. A First course in Probability
Sheldon Ross
Pearson
Course Name: NUMERICAL AND STATISTICAL METHODS LAB
Course Code: MATH2012

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Course outcome: After completing the course the student will be able to:
1. Reproduce customized programs to solve problems based on Numerical Methods.
2. Develop algorithms to handle large systems of equations appearing in physical and engineering problems.

Development of computer programs in C for the following problems:
1. Regula-Falsi Method
2. Newton-Raphson Method
3. Gauss-elimination Method
4. Gauss-Seidel Method
5. Newton’s Forward Interpolation
6. Lagrange’s Interpolation
7. Trapezoidal and Simpson’s 1/3rd rule
8. Euler’s and Modified Euler’s Method
9. Runge-Kutta method of 4th order
10. Computation of Mean, Median, Mode and Standard Deviation for grouped and ungrouped frequency distribution
11. Computation of Correlation coefficient and Regression equation for Bivariate data.
Course Name : ANALOG ELECTRONIC CIRCUITS
Course Code : ECEN2101

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course outcomes:
1. Analysis of different types of signals
2. BJT amplifiers- biasing
3. Oscillators, Op-Amps and their applications
4. Analog circuit design

MODULE 1: Analog Signals and Devices

Introduction to Analog Signal [1L]:
Basic concepts on analog, discrete and digital signals, simple signal processing circuits (clippers, clampsers)

Bipolar Junction Transistors (BJT)[2L]:
DC operating point, BJT characteristics & parameters, emitter bias with and without emitter resistance, operating point (Q point) and its stability.

Small Signal BJT Amplifiers[6L]:
AC equivalent circuit; Hybrid and re model.
Applications of AC equivalent circuits in amplifier design; input impedance, output impedance, voltage gain, current gain for CE, CB and CC configurations.

MODULE 2: Amplifiers and Oscillators

Feedback & Oscillator Circuits[6L]:
Concept of feedback. Analysis of practical feedback amplifiers; Input and output impedance of different topologies, Sinusoidal Oscillators; Phase-shift, Wien-Bridge, Hartley, colpitt and crystal Oscillators.

Frequency Responses and Multistage Amplifiers[6L]:
Frequency response of CE, RC-coupled amplifiers; effect of external, parasitic and wiring capacitors on cut-off frequencies, Miller capacitance, effect of frequency dependent h_{fe}, Giacoletto (hybrid π) model of BJT, gain bandwidth product, unity-gain frequency

MODULE 3: Operational Amplifiers (OPAMPs)

Fundamentals of OPAMP[4L]:
Basic building blocks of OPAMP. Current source and current mirror circuits. Types of differential amplifier, AC and DC analysis of differential amplifiers; dual-input, balanced-output and dual-input, unbalanced-output. Frequency response of OPAMP.
Applications of OPAMP[6L]:
Log-antilog amplifier, realization of basic algebraic equations using OPAMPs, designing of analog computers. Instrumentation amplifier. Precision rectifier.

MODULE 4: Analog Circuit Design and Applications
Power Amplifiers[3L]:
Class A; Calculation of DC power, AC power and efficiency of RC-coupled and transformer coupled class A amplifiers. Class B amplifiers; Calculation of DC power, AC power and efficiency, push-pull configurations. Class AB; concept and cross-over distortion, Class C amplifier.

Applications Analog IC[2L]:
555 Timer IC; Astable, Mono-stable operations

Text Books:
1. Adel S. Sedra & Kenneth Carless Smith, Microelectronic Circuits, Oxford University Press

Reference Books
1. Behzad Razavi, Fundamentals of Microelectronics, Wiley India Pvt Ltd
4. D. Roy Choudhury, Linear Integrated Circuits, New Age International
5. Anant Agarwal & Jeffrey H. Lang, Foundations of Analog and Digital Electronic Circuits, Elsevier
1. Design and study of clipper and clamper circuits using diodes
2. Design a RC-coupled CE amplifier and study its frequency response, input impedance, output impedance.
3. Design an astable multivibrator using 555 Timer IC
4. Design a mono-stable multivibrator using Timer IC
5. Precision rectifier; full wave, half wave
6. Design a RC phase shift oscillator
7. Design Wien-Bridge oscillator
8. Triangular waveform generator
9. Square wave generator
10. Schmitt trigger oscillator
Course Name : Data Structure & Algorithm
Course Code : ECEN2102

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course outcome:
1. Idea about different data structures
2. Sorting, Searching and Hashing algorithms- their applications

Module -I. [8L] Linear Data Structure I

Introduction (2L):
Why we need data structure?

Concepts of data structures: a) Data and data structure b) Abstract Data Type and Data Type. Algorithms and programs. Basic idea of pseudo-code. Algorithm efficiency and analysis, time and space analysis of algorithms – order notations.

Array (2L):
Different representations – row major, column major. Sparse matrix - its implementation and usage.

Linked List (4L):
Singly linked list, circular linked list, doubly linked list,

Module -II: [7L] Linear Data Structure II

Stack and Queue (5L):
Stack and its implementations (using array, using linked list), applications. Queue, circular queue, deque. Implementation of queue- both linear and circular (using array, using linked list), applications. Basic concept of deque.

Recursion (2L):
Principles of recursion – use of stack, differences between recursion and iteration, tail recursion.
Module - III. [11L] Nonlinear Data structures

Trees (7L):
Basic terminologies, tree representation (using array, using linked list). Binary trees - binary tree traversal (pre-, in-, post- order), Binary search tree- operations (creation, insertion, deletion, searching). Height balanced binary tree – AVL tree (only basic concept, insertion, deletion with examples only).

Graphs (4L):
Graph representations/storage implementations – adjacency matrix, adjacency list, Graph traversal and connectivity – Depth-first search (DFS), Breadth-first search (BFS)

Module - IV. [10L] Searching, Sorting, Hashing:

Sorting Algorithms (6L):
Bubble sort, insertion sort, selection sort, merge sort, quicksort, heap sort, radix sort.

Searching (2L):
Sequential search, binary search

Hashing (2L):
Hashing functions, collision resolution techniques (Open and closed hashing).

Recommended books:
Course Name : Data Structure Lab
Course Code : ECEN2112

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Implementation of array operations.
Stacks and Queues: adding, deleting elements
Circular Queue: Adding & deleting elements
Merging Problem.
Evaluation of expressions operations on Multiple stacks & queues.
Implementation of linked lists: inserting, deleting, inverting a linked list.
Implementation of stacks & queues using linked lists:
Sparse Matrices : Multiplication, addition.
Recursive and Nonrecursive traversal of Trees.
DFS and BFS.
Application of sorting and searching algorithms.
Course Name : SIGNALS AND SYSTEMS
Course Code : ECEN2103

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course outcome:
1. Continuous and discrete Signal – conception about the properties
2. Laplace transform, Z-transform
3. Fourier series and analysis
4. Filters and their properties and uses

Module No-1: Introduction to Signal and Systems: (10 L)
1.1. Classification of Signals:– Discrete and continuous signal, Periodic aperiodic, even – odd, energy and power signals, Deterministic and random signals, complex exponential and sinusoidal signals, periodicity, unit impulse, unit step, Transformation of independent variable of signals, time scaling, time shifting.
1.2. Properties of Systems:– Linearity, Causality, time invariance and stability. Dirichlet’s conditions, Distortionless systems, Invertible systems- Frequency response of LTI discrete time system, discrete time invariant system describe by constant coefficient linear difference equation, Impulse response of an LTI recursive system.

Module No-2: Analysis of continuous time and discrete time signals: (10 L)
2.1 Convolution in continuous time, Continuous time Fourier Series, Fourier transformation of continuous time signals and their properties.
2.2. Laplace transformation- analysis and characterization of LTI systems with examples and properties. Computation of impulse response and transfer function using Laplace transform. Parseval’s theorem.
2.3. Convolution in discrete time, Correlation of discrete time signals, Discrete time Fourier Series, Fourier transformation of discrete time signals and their properties.

Module No-3: Application of Signal and Systems theory: (8 L)
3.1 Sampling Theorem, Types of sampling, Aliasing, Pre-alias filter, Reconstruction of a signal from its samples, Modulation for communication, Sampling of Band-pass signals, Filtering, Hilbert Transform.
3.2 Concept of digital low pass, high pass, band pass and band stop filters with ideal magnitude response, All pass transfer function, zero phase transfer function, Minimum and Maximum phase transfer function.
Module No -4: Random Signal And System, Noise (8 L)

Definitions, distribution & density function, mean values & moments, function of two random variables, concept of correlation, random processes, spectral densities, response of LTI system to random inputs, Noise sources in circuits, noise in communication circuits and systems, noise voltage.

Text Book:
2. S.Haykin & B.V.Veen, Signals and Systems - John Wiley

References:
2. B.P.Lathi- Signal Processing & Linear Systems- Oxford
<table>
<thead>
<tr>
<th>Course Name</th>
<th>SIGNALS AND SYSTEMS LABORATORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>ECEN2113</td>
</tr>
<tr>
<td>Contact Hours per week</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Hardware Experiments:-
2. Study of sampling theorem.

Software Experiments:-
1. To study the generation of different type of continuous and discrete signals.
2. To study the different operation of signals.
3. To study convolution theorem in time and frequency domain.
4. To study the autocorrelation and crosscorrelation of signal.
5. To study the Fourier transform and Laplace transform.
Course Name : CIRCUIT THEORY AND FILTERS
Course Code : ECEN2105

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OUTCOMES OF CIRCUIT THEORY

- Solve electric circuits containing AC and DC sources applying network theorems
- Analyze magnetically coupled circuits
- Apply Laplace transform for transient analysis of electrical circuits
- Solve electric circuits applying concepts of graph theory.
- Apply two port network analysis to calculate open circuit impedance parameter, short circuit admittance parameter, transmission parameter and hybrid parameter
- Analyze and synthesize filters
- Circuit Simulation using SPICE

Module-I

Network equations: Formulation of Node & Mesh equations. Loop and node variable analysis of transformed circuits. Network Theorems: Thévenin’s, Norton’s, Superposition and Reciprocity theorem applied to circuits containing dependent sources. [8L]

Coupled Circuits: Coefficient of coupling, Dot convention, Analysis of coupled circuits. [3L]

Module-II

Module-III

Graph theory: Graph of network: Concept of path, tree, tree branch, tree link, loop, tie set and cut set. Incidence Matrix, tie-set Matrix and f-cut set matrix and their properties. Loop currents and node-pair potentials, formulation of loop and node equilibrium equations in view of graph theory. [5L]

Two port networks: Open circuit Impedance & Short circuit Admittance parameter, Transmission parameters, Hybrid parameters and inverse hybrid parameters. Inter relation between parameters. Inter connection between two port networks. Driving point & transfer impedance & admittance.
Module-IV

SPICE: Structure of a SPICE program, active and passive device/element statements, different study like DC analysis, transient analysis and ac analysis statement in SPICE. Plotting and printing statement, input and output Impedance calculation using SPICE, voltage and current controlled components in SPICE.

Text Books:
1. Networks and Systems, D. Roy Chowdhury, New Age International Publishers
2. Circuit theory, Dr. Abhijit Chakrabarty, Dhanpat Rai & Co Pvt. Ltd.

Reference Books:
<table>
<thead>
<tr>
<th>Course Name</th>
<th>CIRCUIT THEORY AND FILTERS LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>ECEN2115</td>
</tr>
<tr>
<td>Contact Hours per week</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

1. Determination of Laplace transform and Inverse Laplace transform of different using MATLAB.
2. Generation of Periodic, Exponential, Sinusoidal, Damped Sinusoidal, Step, Impulse, Ramp signal using MATLAB in both discrete and analog form;
3. Representation of Poles and Zeros in s-plane, determination of partial fraction expansion in s-domain and cascade connection of second-order systems using MATLAB;
4. Find out the transfer function of an electrical Network containing RL, RC & RLC and find out pole-zero
5. Transient response of R-L and R-C network using SPICE
6. Transient response of R-L and R-C network using hardware components
7. Transient response of R-L-C series and parallel circuit using SPICE and hardware verification
8. Verification of Network theorems (Reciprocity, Compensation theorem) using SPICE software
9. Determination of Impedance (Z), Admittance (Y) and Transmission (T) parameter of a two port network using SPICE or circuit maker.
10. Determination of Impedance (Z), Admittance (Y) and Transmission (T) parameter of a two port network using hardware.
ECE, 2nd Year, 2nd Semester (UG)

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Basic Environmental Engineering & Ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CHEM2001</td>
</tr>
<tr>
<td>Contact Hours per week</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Course outcome:
1. Importance of ecology
2. Sources of pollution and control of the same
3. Association of health hazards with pollution

Module 1
Environment & Ecology (General discussion) 9L
Basic ideas of environment and its component 1L
Mathematics of population growth: exponential and logistic and associated problems, definition of resource, types of resource, renewable, non-renewable, potentially renewable, Population pyramid and Sustainable Development. 2L
General idea of ecology, ecosystem – components, types and function. 1L
Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundarban); Food chain [definition and one example of each food chain], Food web. 2L
Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphorus, Sulphur]. 2L
Biodiversity- types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity. 1L

Module 2
Air pollution and control 9L
Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause. 1L
Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Acid rain: causes, effects and control. Earth’s heat budget, carbon capture, carbon footprint 2L
Lapse rate: Ambient lapse rate, adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion). Atmospheric dispersion, Maximum mixing depth 2L
Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants- Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN. 1L
Smog: Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green house gases, effect of ozone modification 1L
Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP, cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). 2L
Module 3

Water Pollution and Control
Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, 2L
River/Lake/ground water pollution: River: DO, 5 day BOD test, Unseeded and Seeded BOD test, BOD reaction rate constants, COD. Lake: Eutrophication [Definition, source and effect]. Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only) 1L
Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening]
Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] 2L
Water pollution due to the toxic chemicals effects: Lead, Mercury, Cadmium, Arsenic 1L

Noise Pollution
Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise]. Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level, L_{10} (18hr Index), effective perceived noise level. Noise pollution control. 2L

Module 4

Land Pollution
Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes, electronic waste 2L
Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling. 2L
Social Issues, Health and Environment
Environmental disasters: Bhopal gas tragedy, Chernobyl disaster, Three Mile Island disaster, cancer and environment: carcinogens, teratogens and mutagens (general aspect) 2L
Environmental impact assessment, Environmental audit, Environmental laws and protection act of India. 1L
Energy audit, Green building, Green sources of energy, Concept of Green Chemistry, Green catalyst, Green solvents (replacement of VOC) 2L

References/Books
3. Asim K. Das, Environmental Chemistry with Green Chemistry, Books and Allied P. Ltd
4. S. C. Santra, Environmental Science, New Central Book Agency P. Ltd
5. GourKrishna Das Mahaputra, Basic Environmental Engineering and Elementary Biology, Vikas Publishing House P. Ltd.
Course Name: EM THEORY & TRANSMISSION LINE
Course Code: ECEN2201

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course outcome:
1. Electro magnetic field and its propagation
2. Antenna theory
3. Transmission lines and its characteristics

Electromagnetic Theory

1. Vector calculus - orthogonal Coordinate System, Transformations of coordinate systems; Del operator; Gradient, Divergence, Curl - their physical interpretations; Laplacian operator. [3]

3. Faraday's law & Lenz's law. Displacement Current, \(J_c \)- JD Relation, Maxwell's equations, Time-harmonic fields, Wave Equation, Boundary Conditions between media interface; Uniform Plane wave; Plane Wave Propagation in Lossy Dielectric, Loss-less Dielectric, Good Conductor, Free space; Poynting Theorem, Power flow, Poynting vector, Skin Depth, Surface Resistance; Reflection and Transmission for normal incidence.[10]

Transmission Lines

4. Transmission Lines; Concept of Lumped parameters and Distributed parameters. Line Parameters, Transmission line equations and solutions, Physical significance of the solutions, Propagation constant, Characteristic Impedance; Wavelength; Velocity of Propagation; Distortion-less Line, Reflection and Transmission coefficients; Standing Waves, VSWR, Input Impedance, Smith Chart -Applications; Load Matching Techniques / Quarter wave Matching, Bandwidth problem; Low loss RF transmission lines, line as circuit elements. [10]

Radiation of E M Waves

Text Books
2. Electromagnetic Field Theory & Transmission Lines, G.S.N. Raju, Pearson Education

Reference Books
2. Fields & Waves in Communication Electronics, S. Ramo, J. R. Whinnery & T. Van Duzer, John Wiley
[At least THREE experiments from Module I and FOUR experiments from Module II]

Module I:

1. Plotting of Standing Wave Pattern along a transmission line when the line is open-circuited, short-circuited and terminated by a resistive load at the load end.
3. Study of Smith chart on MATLAB platform.
4. Simulation study of Smith chart - Single and double stub matching.

Module II:

5. Radiation Pattern study of dipole antenna.
6. Radiation Pattern study of a folded-dipole antenna.
7. Radiation pattern study of Helical Antenna.
8. Parametric study (Gain, Directivity, HPBW and FNBW) of three, five and seven element Yagi Uda configurations.
9. Radiation pattern study of a Pyramidal Horn Antenna.
10. Spectrum analysis of different analog signals (sine, triangular, square) using spectrum analyzer.
Course Name : DIGITAL ELECTRONICS
Course Code : ECEN2002

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course outcome:
1. Binary system
2. Logic gates and design using gates
3. Logic families
4. Memory classification

Module-1
Data and number systems; Binary, Octal and Hexadecimal representation and their conversions; BCD, Gray codes and their conversions; Signed binary number representation with 1’s and 2’s complement methods, Binary arithmetic. Boolean algebra, De-Morgan’s theorem, Various Logic gates- their truth tables and circuits; Representation in SOP and POS forms; Minimization of logic expressions by algebraic method, K-map method, Tabular method. [8]

Module-2:
a) Combinational circuits- Adder and Subtractor, BCD adder, BCD subtractor, Applications and circuits of Encoder, Decoder, Comparator, Multiplexer, De-Multiplexer and Parity Generator. [7]
b) Memory Systems: Concepts and basic designs of RAM, ROM, EPROM, EEROM, Programming logic devices and gate arrays. (PLAs and PLDs) [5]

Module-3:
Sequential Circuits- Basic memory element-S-R, J-K, D and T Flip Flops, Interconversions of Flip-Flop, State table and state transition diagram, sequential circuits design methodology, FSM (Mealy and Moore machine), various types of Registers and counters (Synchronous, asynchronous, Irregular, cascaded, ring, johnson) and their design, Lockout and its remedy. [8]

Module-4:
a) Different types of A/D(Flash, SAR, Counter type, Dual slope) and D/A(R-2R, weighted resistor) conversion techniques. [4]
b) Logic families- RTL, DTL, TTL, ECL, and CMOS, their operation and specifications. Realization of basic gates using above logic families. [4]

Total: 40 hours
 2. R.P.Jain-Modern Digital Electronics, 2/e , Mc Graw Hill
 3. Virendra Kumar-Digital technology, New Age Publication

 2. Tocci, Widmer, Moss- Digital Systems,9/e- Pearson 7. 3. Leach &
 Malvino—Digital Principles & Application, 5/e, Mc Graw Hill
<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Code conversion circuits- BCD to Excess-3 and vice-versa.
2. Four-bit parity generator and comparator circuits.
5. Realization of different combinational circuits using Multiplexers.
6. Design of 4-bit Priority Encoder using logic gates.
10. Design of Sequential Counter with irregular sequences.
11. Realization of Ring counter and Johnson’s counter.
Course Name : ANALOG COMMUNICATION
Course Code : ECEN2203

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course outcome:
1. Modulation methods – comparison of AM, FM etc
2. Multiplexing concepts
3. Noise in communication systems
4. Communication systems

Module-1

Introduction to Analog Communication: Introduction to basic elements of communication systems, signal transmission through linear systems, Condition for distortion less transmission of signals through networks. Different types of distortion and their effect on the quality of output signals. Concept of modulation, its needs.

Continuous Wave Linear Modulation:
a) Amplitude modulation (AM-DSB/TC): Time domain representation of AM signal (expression derived using a single tone message), modulation index, frequency domain (spectral) representations, illustration of the carrier and side band components; transmission bandwidth for AM; Phasor diagram of an AM signal; Calculation of Transmitted power & sideband power & Efficiency; concept of under, over and critical modulation of AM-DSB-TC.
b) Other Amplitude Modulations: Double side band suppressed carrier (DSBSC) modulation: time and frequency domain expressions, bandwidth and transmission power for DSB. Single side band modulation (SSB) both TC & SC and only the basic concept of VSB, Spectra and bandwidth.

Mod-2

9L

Generation & Detection of Amplitude Modulation:
a) Generation of AM: Gated, Square law modulators, Balanced Modulator.
b) Generation of SSB: Filter method, Phase shift method and the Third method

Demodulation for Linear Modulation:
Demodulation of AM signals: Detection of AM by envelope detector, Synchronous detection for AM-SC, Effects of Frequency & Phase mismatch, Corrections.
Angle Modulation:

a) Frequency Modulation (FM) and Phase Modulation (PM): Time and Frequency domain representations, Spectral representation of FM and PM for a single tone message, Bessel’s functions and Fourier series.; Phasor diagram;
b) Generation of FM & PM: Narrow and Wide-band angle modulation, Basic block diagram representation of generation of FM & PM, Concept of VCO & Reactance modulator
c) Demodulation of FM and PM: Concept of frequency discriminators and phase discriminators, Phase Locked Loop.

Mod - 4

10L

a) Multiplexing: Frequency Division Multiplexing, Time Division Multiplexing,
b) Radio Receivers –Basic block diagram of TRF, Superheterodyne principle.

Random Signals and Noise in Communication System:
i) Noise in Communication systems – Internal & External noise, Noise Temperature, Signal-to-Noise ratio, White noise, thermal noise, Figure of Merit.
iii) Noise performance in Analog Communication systems: SNR calculation for DSB/TC, DSB-SC, SSB-TC, SSBSC & FM.

Total 36 Hours

Text Books:
1. B.P.Lathi -Communication Systems- BS Publications

References:
2. Proakis & Salehi Fundamentals of Communication Systems- Pearson
3. V Chandra Sekar – Analog Communication- Oxford University Press
4. P K Ghosh- Principles of Electrical Communications- University Press
<table>
<thead>
<tr>
<th>Course Name</th>
<th>ANALOG COMMUNICATION LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>ECEN2213</td>
</tr>
<tr>
<td>Contact Hours per week</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

1. Measurement of modulation index varying modulating signal amplitude of an AM signal
2. Measurement of modulation index varying modulating signal amplitude of a FM signal
3. Design a FM demodulator using PLL.
4. Design an AM demodulator (Envelope detector)
6. Spectral analysis of AM Signal
7. Spectral analysis of FM signal
8. Study of TDM
Course outcome:

1. In depth knowledge about semiconductors, the conduction, doping
2. Types of diodes
3. BJT – equivalent models
4. FET – the theory of operation

Module - 1: Semiconductor Physics

Recapitulation of Quantum Mechanics, Kronig Penny Model, Energy Band diagram, E-K diagram, Direct and Indirect Band-gap semiconductors, concept of effective mass, Carrier distribution in solid, concept of density of state (only expression), Fermi-Dirac distribution, Fermi level, Intrinsic and Extrinsic semiconductors, idea of Degeneracy and Non-Degeneracy, Fermi level shift with the changes in doping and temperature. (7L)

Semiconductor under equilibrium: Carrier Concentration in terms of effective Density of States, Mass-Action Law. (2L)

Semiconductor under non-equilibrium: Drift and Diffusion of carrier with expressions, Scattering Effect, Hall Effect, Piezo-electric effect, Excess Carrier Generation and recombination with expression, concept of quasi Fermi-level. (3L)

Module - 2: Diodes

Basic concepts about Homo & Hetero junctions

Homo-junctions: p-n junction physics: derivations and plots of depletion charge, electric field, potential profiles; energy band diagram, depletion width, p-n junction capacitances, Varactor diode, Derivation of p-n junction current, junction resistances; concepts about linearly graded and abrupt junctions. (5L)
Basic operations of different diodes: Breakdown diodes, Tunnel diode, Photo diodes (P-N, P-I-N, APD), Photoconductor, Solar cell; Basic concept about Spontaneous and Stimulated emissions, LED. (4L)

Hetero-junctions: Physics of Metal-Semiconductor & Semiconductor-Semiconductor hetero-junctions, Rectifying & Non-rectifying natures of Hetero-junctions, basic concept of potential-well & 2D electron gas. (3L)

Module - 3: Bipolar Junction Transistors (BJT): (8L)

Physic of BJT: Basic device operating principle, minority carrier distributions, Different modes of operations and respective band diagrams, input output characteristics of BJT in CB & CE modes, base width modulation, Early effect, punch through, thermal runaway; concepts about large and small signal modeling of the device, Eber’s Moll model, Hybrid-π model. (6L)

Basic operations of different transistors: Photo-transistor, TRIAC, DIAC, UJT, SCR. (2L)

Module - 4: Field Effect Transistors (FET): (8L)

JFET: Device construction and physics, principle of operation, V-I characteristics. (2L)

MOSFET: Physics of 2-terminal MOS structures with proper band diagrams; MOSFET classifications: Enhancement and Depletion type MOSFETs, basic operations and V-I characteristics of both the devices; concepts of Threshold voltage and Flat-band voltage, small signal model of MOSFET, Introduction to CMOS technology. (6L)

Text Books:

1. Neamen- Semiconductor Physics and Devices- TMH

Reference Books:

1. Milman, Halkias & Jit- Electronics Devices and Circuits- TMH
2. Bell-Electronics Devices and Circuits-Oxford
3. Bogart, Bisley & Rice- Electronics Devices and Circuits- Pearson
Course Name : PHYSICS II
Course Code : PHYS2201

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course outcome:
1. Ideas about classical, statistical and quantum mechanics
2. Dielectric and magnetic properties
3. Superconductivity

Module 1:

Classical Mechanics:

Course should be discussed along with simple physical problems.

Quantum Mechanics:
Physical interpretation of wave function Ψ (normalization and probability interpretation). Concept of probability and probability density. Operator. Commutator. Formulation of quantum mechanics and basic postulates. Operator correspondence. Time dependent Schrödinger’s equation. Formulation of time independent Schrödinger’s equation by method of separation of variables. Expectation values. Application of Schrödinger equation – Particle in an infinite square well potential (1-D and 3-D potential well), discussion on degenerate energy levels.

4 lectures

Module 2:

Statistical Mechanics:

6 lectures

Applications of Statistical Mechanics
Module 3:
Dielectric Properties:

5 lectures

Magnetic Properties:

5 lectures

Module 4:
Band Theory of Solids:

6 lectures

Super Conductivity

4 lectures
Course Name : PHYSICS II LAB

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PHYS2211</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Hours</td>
<td>L</td>
</tr>
<tr>
<td>per week</td>
<td>0</td>
</tr>
</tbody>
</table>

Group 1: Experiments on Electricity and Magnetism
1. Determination of dielectric constant of a given dielectric material.
3. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of logarithmic decrement with series resistance.
4. Determination of the thermo-electric power at a certain temperature of the given thermocouple.
5. Determination of specific charge (e/m) of electron.

Group 2: Quantum Physics
6. Determination of Planck’s constant.
7. Determination of Stefan’s radiation constant.
8. Verification of Bohr’s atomic orbital theory through Frank-Hertz experiment.
9. Determination of Rydberg constant by studying Hydrogen/ Helium spectrum

Group 3: Modern Physics
10. Determination of Hall co-efficient of semiconductors.
11. Determination of band gap of semiconductors.
12. To study current-voltage characteristics, load response, areal characteristics and spectral response of photo voltaic solar cells.

Note: A candidate is required to perform at least 5 experiments taking one from each group. Emphasis should be given on the estimation of error in the data taken.

Recommended Text Book:

Quantum Physics
- Atomic Physics – S.N. Ghoshal – S Chand
- Quantum Physics– Eisberg and Resnick – Wiley
- Quantum Mechanics – A.K. Ghatak and S. Lokenathan –Springer

Classical Mechanics

Solid State Physics
- Atomic Physics – S.N Ghoshal
• Elementary Solid State Physics – M.Ali Omar – Pearson Education
• Solid State Physics – A.J Dekkar – Macmillan
• Introduction to Solid state Physics – C.Kittel

Statistical Mechanics

• Thermodynamics, Kinetic Theory, and Statistical Mechanics–Sears and Salinger–Narosa
Course Name : Indian Culture and Heritage
Course Code : HMTS2002

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Module I

Indian Religion & Philosophy

1. Orthodox Indian Philosophy:

2. Unorthodox Indian philosophy:

3. Essentials of Hinduism

4. An overview of Jainism, Buddhism, Sikhism, Islam, Christianity religions

Module II

Values and Personality

1. Aspects of Indian Values
2. Essentials of Personality Building
3. Ethics at work place
4. Aspects of Leadership qualities

Module III

Indian Scriptures

1. Selections from the Vedas
2. Select verses from Upanishad
3. An overview of Gita
4. XVIth chapter of Gita

Module IV

Indian Psychology

1. Aspects of Yoga Philosophy
2. Mind and its workings according to Yoga
3. Law of Karma
4. Selections from Manusmriti

References:
1. Indian Philosophy by S.C. Chatter and D. M. Dutta, Calcutta University Press
2. Spiritual Heritage of India, Swami Prabhavananda, Sri Ramakrishna Math, Chennai
3. Raja Yoga by Swami Vivekananda, Advaita Ashrama, Mayavati
4. Vedic Selection, Calcutta University Press
5. Gita by Swami Swarupananda, Advaita Ashrama, Kolkata
6. Upanishads by any press
7. Carving a Sky (MSS) by Samarpan
8. Essentials of Hinduism (MSS) by Samarpan
9. The Call of the Vedas — Bharatiya Vidya Bhavan
Course Name: Language Practice Lab Level II
Course Code: HMTS2022

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Modules

Module 1

Formal verbal communication:
- Introduction to formal verbal communication, Interpersonal Skills & Public Speaking: Building Positive Relationships, Focusing on Solving Problems, Time Management, Dealing with Criticism: Offering Constructive Criticism, Responding to Criticism – Managing Conflict: Approaches to Conflict, Resolving Conflict
- Conversational skills in the business scenario: One-to-one and Group communication, Gender and Culture Sensitivity, Etiquette, Sample Business Conversation, Telephonic Conversation

Module II

Presentation skills
- Speech Purposes - General: Informative Speeches, Persuasive Speeches, Entertaining Speeches, Methods of Speaking: Speaking from a Manuscript, Speaking from Memory, Impromptu Delivery, Extemporaneous Delivery, Analyzing the Audience, Nonverbal Dimensions of Presentation
- Organising the Presentation: the Message Statement, Organising the Presentation: Organizing the Speech to Inform, The Conclusion, Supporting Your Ideas – Visual Aids: Designing and Presenting Visual Aids, Selecting the Right Medium, Post-presentation Discussion

Module III

Group Discussion
- Introduction to Group Communication
Module IV
Job Application and Personal Interview

- **Job Application** Letter: Responding to Advertisements and Forced Applications, Qualities of Well-Written Application Letters: The You-Attitude, Length, Knowledge of Job Requirement, Reader-Benefit Information, Organization, Style, Mechanics – Letter Plan: Opening Section, Middle Section, Closing Section

- **Interviewing**

Marks: 100
Module I- 20 marks
Module II- 30 marks
Module III- 20 marks
Module IV- 30 marks

References:

ECE Department B.Tech.

3rd. Year, 1st. Semester

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Economics for Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>HMTS3101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Module 1:

Market: Meaning of Market, Types of Market, Perfect Competition, Monopoly, Monopolistic and Oligopoly market.
The basic concept of economics – needs, wants, utility.
Inflation: meaning, reasons, etc. (6L)

Module 2:

Business: Types of business, Proprietorship, Partnership, Joint-stock company, and cooperative society – their characteristics.
Banking: role of commercial banks; credit and its importance in industrial functioning. Role of central bank: Reserve Bank of India.
International Business or Trade Environment. (4L)

Module 3:

Cost Accounting- Terminology, Fixed, Variable and Semi-variable costs.
Marginal Cost based decisions. (6L)
Module 4:

Capital Budgeting: Methods of project appraisal - average rate of return - payback period - discounted cash flow method: net present value, benefit cost ratio, internal rate of return. Depreciation and its types, Replacement Analysis, Sensitivity Analysis. (8L)

Evaluation: Max marks-100
Internal Test-30
Semester Test-70

Suggested Readings:

Course Name : Control Systems
Course Code : ECEN3102

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Outcomes:
The students will acquire understanding of the following:
1. Control systems, mathematical models and transfer functions
2. Analysis techniques – different domains
3. Control design techniques
4. State space analysis

MODULE – I
INTRODUCTION
Concepts of Control Systems - Open Loop and Closed Loop Control Systems - their differences- Different examples of Control Systems - Classification of Control Systems, Feed-Back Characteristics, Effects of feedback.
Mathematical models – Differential equations, Impulse Response and Transfer Functions -Translational and Rotational mechanical systems. [4L]
TRANSFER FUNCTION REPRESENTATION
LTI system- its advantage in analysis. Laplace transform- its use in transfer function analysis. Transfer Function of linear systems- presence or absence of initial condition. Block diagram representation of systems considering electrical systems as examples -Block diagram algebra – Representation by Signal Flow Graph - Transfer function using Mason’s Gain Formula. [5L]

MODULE - II
TIME DOMAIN ANALYSIS
STABILITY ANALYSIS
The concept of stability- Difference between absolute and relative stability. – Routh’s stability criterion – its advantages and limitations.
Root Locus Technique:
The Root Locus concept - construction of Root Loci-effects of adding poles and zeros to G(s)H(s) on the root loci. [5L]

MODULE – III
FREQUENCY DOMAIN ANALYSIS
Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Phase margin & Gain margin-Stability Analysis from Bode Plots. [6L]
Polar Plots, Nyquist Plots Stability Analysis. [4L]

MODULE – IV
CLASSICAL CONTROL DESIGN TECHNIQUES
Compensation techniques – Lag, Lead, Lead-Lag Controllers design in frequency Domain, PID Controllers. [5L]
STATE SPACE ANALYSIS OF CONTINUOUS TIME SYSTEMS
Concepts of state, state variables and state model, derivation of state models from block diagrams,
Diagonalization- Solving the Time invariant state Equations- State Transition Matrix and its properties –
Concepts of Controllability and Observability . [6L]

TEXT BOOKS:

REFERENCE BOOKS:
3. Automatic Control Systems- Basic analysis and design- by A. Wolovich- Oxford University Press.
Course Name: Control Systems Laboratory

Course Code: ECEN3112

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Outcomes:
The students will acquire understanding of the following:
1. Control systems, mathematical models and transfer functions
2. Analysis techniques – different domains
3. Control design techniques
4. State space analysis

List of Experiments for Control Systems Laboratory

1. Familiarization with MATLAB Control System Toolbox and SIMULINK.
2. Study of the effect of feedback on systems.
3. Study of first order systems having different time constants.
4. Study of second order systems having different damping ratios.
5. Verification and validation of time domain specifications of second order systems.
6. Study of steady state errors for different ‘types’ of systems.
7. Study of system stability using Root Locus Technique.
8. Study of system stability using Nyquist plot.
10. Study of system relative stability using Nyquist Plot and Bode Plot.
11. Study of system representation using State Model.
12. Determination of PI, PD and PID controller action on first order simulated process.
Course Name: MICROELECTRONICS & ANALOG VLSI DESIGN
Course Code: ECEN3103

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Course Outcomes:
The students will acquire understanding of the following:
1. Basics of microelectronics and VLSI design
2. Types of MOS, IC manufacturing Process - the steps
3. Analog VLSI circuits – the intricacies
4. Important Circuits like OP AMP and their analysis

Module I: Introduction and the MOS Transistor: [8L]
Unit2: Knowledge about MOS, Structure and Principle of operation of enhancement-mode MOS transistor, MOS-Characteristics, MOS Capacitors, Short Channel MOS, NMOS vs PMOS.

Module II: Fabrication Flow: [10L]
Unit1: IC Process Flow, clean environment, Wafer Growth and Preparation, CVD Techniques, Epitaxy, Oxidation (Dry and Wet), Photo Lithography: Contact, Proximity, Projection, Photo Resist, Etching (Wet and Dry), Diffusion, Ion Implantation, Metallization and interconnects. VLSI Process Integration. Assembly & Packaging of VLSI devices.

Module III: Analog VLSI Sub-circuits: [10L]
Analog VLSI Design Steps, Basic Building Blocks of Analog VLSI Chips, large signal and small signal analysis and equivalent circuit model, small signal parameters for low frequency and high frequency model, MOS Switch, MOS Diode, Active Load/Resistors, Voltage Dividers, Current Mirror, CMOS Current Mirror & Sink (Cascode), CMOS Voltage Reference, CMOS Bandgap Reference (Basic Circuit Only).

Module IV: Analog VLSI Circuits: [10L]
Unit1: Common-Source, Common-Drain and Common-Gate single stage amplifiers, Differential Amplifier: Common Mode, Differential Mode, Transfer Characteristic Curves, CMRR, Differential Amplifier with Active Load.

Unit2: CMOS OPAMP, Switched Capacitor Filter.

Text Book:
1. VLSI Technology 2ND Edition, Author: Sze, S.M.; MCGRAW HILL COMPANIES.

Reference Book:
Course Name: MICROELECTRONICS & ANALOG VLSI DESIGN LABORATORY
Course Code: ECEN3113

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Outcomes:
The students will acquire understanding of the following:
1. Basics of microelectronics and VLSI design
2. Types of MOS, IC manufacturing Process - the steps
3. Analog VLSI circuits – the intricacies
4. Important Circuits like OP AMP and their analysis

List of Experiments:
Sub Micron and Deep Sub Micron Technology based Experiments:
1. Introduction to Tanner Design & Layout Tools and SPICE Analysis:
 a. Familiarity with Tanner CAD Tools (S-Edit, W-Edit, L-Edit, DRC, LVS)
 b. Familiarity with T-Spice
 c. NMOS, PMOS VI Characteristics
 d. Transient analysis of CMOS Inverter Circuit
2. Tanner Tool Based Analog Experiments:
 a. MOS as Resistors, Current Source, Sink, Current Mirror
 b. DC, Transient and AC analysis of Single Stage Amplifier
 c. Circuit Analysis of Differential Amplifier
Course outcomes:
The students will acquire understanding of the following:
1. 8-bit Microprocessor and its architecture
2. 16-bit processor and the differences
3. Designing systems with various I/O devices
4. Microcontrollers and applications

Module I: Introduction [4L]
MPU, I/O devices, Memory, Timing and Control Signals, Bussed Architecture, Tristate logic, Latch, Address Bus, Data Bus and Control Bus.

Module II: Microprocessor
8085 [10L]

8086 [8L]

Module III: I/O Interfacing [8L]

Module IV: Microcontroller & Systems
8051 [6L]

Text Books
2. Ray & Bhurchandi, Advanced Microprocessors & Peripherals, Mc Grawhill Education.

3. The 8051 Microcontroller and Embedded systems - Mazidi, Mazidi and McKinley (Pearson).

Reference Books
1. Microprocessors and microcontrollers -N. Senthil Kumar, M. Saravanan and Jeevananthan, Oxford University Press
4. Microprocessors and Microcontrollers by A. Nagoorkani Mc Grawhill Education.
Course outcomes:
The students will acquire understanding of the following:
1. 8-bit Microprocessor and its architecture
2. 16-bit processor and the differences
3. Designing systems with various I/O devices
4. Microcontrollers and applications

1. Write an Assembly Language Program (ALP) using 8085 to
 (a) Store a certain data byte in memory location.
 (b) Exchange the content of memory locations.
 (c) Find the 2’s complement of the number and store it in a certain memory location.
 (d) Find the square of first nine natural numbers from look up table.
 (e) Add two 8-bit numbers stored in consecutive memory locations.
2. Write an ALP using 8085 to multiply two 8-bit numbers by shift and add method.
3. Write an ALP using 8085 to convert HEX Number to ASCII number.
4. Write an ALP using 8085 to arrange a series of numbers in (a) ascending order (b) descending order.
5. Write an ALP using 8085 to generate a Fibonacci series.
6. Write an ALP using 8085 to pack and unpack a BCD number.
7. Interfacing of peripheral devices with the 8085 microprocessor using 8255 PPI.
 (a) To perform the addition of two hex numbers and display the result.
 (b) To obtain the complement of a hex number and display the result.
 (c) To scroll a bit using a delay subroutine.
8. Write an ALP to convert an analog voltage (0-5 Volts) using the 0809 A/D Converter and display the corresponding digital value suitably using 8085 microprocessor and with 8255 PPI.
9. Write an ALP to display a data in the 7-segment display using 8085 and 8255 PPI.
10. Write an ALP to:
 (a) Perform the addition of two 8-bit numbers using 8051 microcontroller.
 (b) Swap the nibbles of an 8-bit data (without using the SWAP instruction) using the 8051 microcontroller.
11. One novel experiment beyond the scope of the syllabus.
Course Name: Digital Communication
Course Code: ECEN3105

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:

1. To understand the functions of different components of a digital communication system and Pulse code Modulation System.

2. To understand some mathematical concepts like probability theory and random process necessary for the course and to analyze conduct of different coded digital baseband signals in time domain and in frequency domain.

3. To analyze error performance of a digital communication system in presence of noise and other interferences.

4. To analyze the performance of Digital modulation and demodulation techniques in various transmission environments and to understand concept of OFDM and Spread Spectrum Communication system.

Syllabus:

Module I:

Module II:
Probability Theory and Random Processes: Concept of probability, Conditional probability, communication example, joint probability, statistical independence, random variable-continuous
and discrete, cumulative distribution function, Probability Distribution Function – Gaussian and Rayleigh, mean, variance, random process, stationary and ergodic processes, correlation coefficient, covariance, autocorrelation function and its properties, power spectral density.

Different type of line coding: Properties of line coding – Polar/Unipolar/Bipolar NRZ and RZ, Manchester, Differential encoding and their PSDs, pulse shaping, Inter Symbol Interference (ISI), Eye pattern, Nyquist criterion for zero ISI, equalizer, zero forcing equalizer, Regenerative repeater, Bit synchronization, Frame synchronization.

Module III:

Signal Vector Representation: Analogy between signal and vector, distinguishability of signal, orthogonal and orthonormal basis functions, orthogonal signal space, message point, signal constellation, geometric interpretation of signals, likelihood functions, Schwartz inequality.

Baseband transmission: Baseband signal receiver, integrate and dump type filter, probability of error calculations, optimum filters, coherent reception, matched filter and its transfer function, Probability of error of matched filter, Concept of error function, complementary error function and Q function.

Module IV:

Digital Modulation Techniques: Types of Digital Modulation, coherent and non-coherent Binary Modulation Techniques, Geometrical representation, generation, detection, error probability and power spectra of basic digital carrier modulation techniques: ASK, PSK and FSK. Concept of QAM and M-ary Communication, M-ary phase shift keying, average probability of symbol error for coherent M-ary PSK, power spectra of MPSK, Quadrature Phase Shift Keying (QPSK), Generation, detection, error probability and power spectra of QPSK signal, Offset Quadrature Phase shift Queuing (OQPSK), Minimum Shift Keying (MSK), signal constellation of MSK waveforms, error probability of MSK signal, Gaussian Minimum Shift Keying: GMSK, Basic Concept of OFDM and Spread Spectrum Modulation.
TEXT BOOKS:
1. Digital Communications, S. Haykin, Wiley India.
5. Electronic Communications Systems, Wayne Tomasi, Pearson Education.

REFERENCE BOOKS:
3. Wireless Communication and Networks : 3G and Beyond, I. Saha Misra, TMH Education.
5. Roden, Analog & Digital Communication Systems, 5e, SPD
6. Communication Systems (Analog and Digital), Sanjay Sharma, Katson Books
Course Outcomes:

1. To understand the functions of different components of a digital communication system and Pulse code Modulation System.

2. To understand some mathematical concepts like probability theory and random process necessary for the course and to analyze conduct of different coded digital baseband signals in time domain and in frequency domain.

3. To analyze error performance of a digital communication system in presence of noise and other interferences.

4. To analyze the performance of Digital modulation and demodulation techniques in various transmission environments and to understand concept of OFDM and Spread Spectrum Communication system.

List of Experiments:

1. Design and implementation of 7-length PN sequences using shift register.

2. Implementation and study of Pulse Amplitude Modulation and demodulation.

3. Study of Pulse Width Modulation and Demodulation

4. Implementation and study of Line Codes : polar/unipolar NRZ, RZ.

5. Implementation and Study of BASK Modulator.

6. Implementation and Study of BASK Demodulator

7. Implementation and Study of BFSK Modulator
8. Implementation and Study of BFSK Demodulator

9. Implementation and Study of BPSK modulator

10. Experiment beyond curriculum.
3rd. Year, 2nd. Semester

<table>
<thead>
<tr>
<th>Course Name: DIGITAL VLSI DESIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code: ECEN3201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course outcomes:
The students will acquire understanding of the following:
1. Basics of designing logic gates, LUT etc.
2. CMOS sequential circuits, Stick diagram etc. and their implications
3. Use of HDL, state machine models
4. Testing of ICs, different techniques.

Module I: VLSI Design Flow and CMOS Combinational Circuits: [14L]

Unit 2: Switching Characteristics of MOS Transistors: Capacitive Effects, Process Characteristic Time Constant, propagation delay models, switching delay in logic circuits. High field effects.

Unit 3: Inverter Characteristics and CMOS Combinational Logic: MOS inverters, CMOS inverter, DC characteristics, Noise Margin and Switching point, switching characteristics, dynamic power dissipation issues. Propagation delay & Delay equation. Static CMOS Logic gate design, pseudonMOS gates, pass transistor logic, Logical effort, transmission gate, TG logic, basic idea of dynamic and domino logic.

Module II: CMOS Sequential Circuits and Physical Design [10L]

Unit 1: Bistability principle, SR Latch circuit, clocked JK Latch/ Master-Slave JK, CMOS D-latch & Edge triggered flip-flop, basic idea of DRAM and SRAM.

Unit 2: CMOS Cross Section, Layout and Mask layers, Inverter Layout, Lambda Rule vs Micron Rule, Std Cell Layout Topology, Stick Diagram, Euler Path Algorithm.

Module III: Synthesis and HDL [8L]

Unit 1: Synthesis – High level, Logic level, Brief ideas on partitioning, floorplanning, placement, routing and compaction

Module IV: Test Methodology of VLSI Circuits: [6L]

Unit 1: Si Testing: Why Testing, Challenge of Si-Testing, Manufacturing Defects, Die (Inter and Intra) Variation, Yield, DPM, Logical Fault Modelling: Stuck at Faults (D-Algorithm), Bridging Fault, Transistor Stuck open/Stuck Short, ATPG, DFT, Scan Design, BIST.

Text Books:

Reference Books:
5. VLSI Design and EDA TOOLS, Author: Angsuman Sarkar, Swapnadip De, Chandan Kumar Sarkar, SCITECH PUBLICATIONS (India) Pvt. Ltd., 2011.
Course outcomes:
The students will acquire understanding of the following:
1. Basics of designing logic gates, LUT etc.
2. CMOS sequential circuits, Stick diagram etc. and their implications
3. Use of HDL, state machine models
4. Testing of ICs, different techniques.

List of Experiments:

1. Sub Micron and Deep Sub Micron Technology based Experiments:
 Backend Design flow using Tanner Design & Layout Tools and SPICE Analysis
 a. Transient analysis of CMOS Inverter Circuit
 b. DC & Parametric analysis of CMOS Inverter
 c. Layout Design and Verification of CMOS Inverter Using Tanner Tools
 d. Implementation of Various Logic Gates
 e. Implementation of Various Sequential Gates

2. Introduction to XILINX-Vivado Simulator, Verilog Coding and Test Bench Simulation
 a. Logic Design and Verification of Digital Gates, Mux, Encoder, Decoder
 b. Logic Design and Verification of a 15 Bit Ripple-Carry Adder
 c. Logic Design and Verification of Sequential Gates: D-Latch, Flop
 d. Logic Design and Verification of a Finite State Machine

3. FPGA Programming Flow using XILINX Hardware Kits: Implementing and verifying many of above experiments in FPGA hardware Kits.
Course Name : Digital Signal Processing & Applications
Course Code : ECEN3202

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course outcomes:
The students will acquire understanding of the following:
1. Basics of sampling, convolution etc, Z-transform
2. DFT and FFT and their applications
3. Filters – IIR and FIR
4. Digital filters, multirate signal processing.

MODULE I [7L]

Introduction to Discrete time signals and systems:
Concept of discrete-time signal and systems: basic idea regarding sampling and reconstruction of signals, arithmetic operations on sequences, representation of systems, impulse response, derivation for the output sequence, concept of convolution, graphical, analytical methods to compute convolution supported with examples and exercises, properties of convolution, interconnections of LTI systems with physical interpretations, stability and causality conditions, recursive and non-recursive systems

Z-Transform:
Definition, mapping between s-plane and z-plane, unit circle, convergence and ROC, properties of Z-transform, Z-transform on sequences with examples and exercises, characteristic families of signals along with ROCs, convolution, correlation and multiplication using Z-transform, initial value theorem, Parseval’s relation, inverse Z-transform by contour integration, power series & partial-fraction expansions with examples and exercises.

MODULE II [8L]

Discrete Fourier Transform:
Concept and relations for DFT/IDFT, Twiddle factors and their properties, computational burden on direct DFT, DFT/IDFT as linear transformations, DFT/IDFT matrices, computation of DFT/IDFT by matrix method, multiplication of DFTs, circular convolution, computation of circular convolution by graphical, DFT/IDFT and matrix methods, linear filtering using DFT, aliasing error, filtering of long data sequences – Overlap-Save and Overlap-Add methods with examples and exercises.
Fast Fourier Transform:

MODULE III [13 L]

Filter Concepts:
Introduction to the concept of Digital Filters, frequency response and filter characteristics, basic concepts of IIR and FIR filters.

IIR Filters:
Introduction to analog filter design: Butterworth and Chebyshev filters design,

FIR Filters:
Linear phase filters: Condition for filter to have linear phase response and its frequency response (Type I, II, III, IV),
Design techniques: Fourier series method, Gibb’s phenomenon, Windowing method (Rectangular, Hamming and Hanning window). Comparative advantages & disadvantages of FIR & IIR Filters.

MODULE IV [8L]

Realization of Digital Filters
Direct form I, Direct Form II, Cascade form structure, Parallel form structure.

Multirate Signal Processing
Introduction: Advantage of Multirate Digital Signal Processing
Decimation: Time domain characteristic, frequency domain characteristic, aliasing effect and anti-aliasing filter specification.
Interpolation: Time domain characteristic, frequency domain characteristic.

Introduction to Digital Signal Processor
Evaluation of DSP processor, DSP architecture, TMS320C3XX.
TEXT BOOKS:

REFERENCE BOOKS:
11. Texas Instruments DSP Processor user manuals and application notes.
Course outcomes:
The students will acquire understanding of the following:
1. Basics of sampling, convolution etc, Z-transform
2. DFT and FFT and their applications
3. Filters – IIR and FIR
4. Digital filters, multirate signal processing.

Simulation Laboratory using standard Simulator:

1. Convolution of two sequences using graphical methods and using commands- verification of the properties of convolution.
2. Z-transform of various sequences – verification of the properties of Z-transform.
3. Twiddle factors – verification of the properties.
4. DFTs / IDFTs using matrix multiplication and also using commands.
5. Circular convolution of two sequences using graphical methods and using commands, differentiation between linear and circular convolutions.
6. Verifications of the different algorithms associated with filtering of long data sequences and Overlap –add and Overlap-save methods.
7. Butterworth filter design with different set of parameters.
8. Chebyshev filter design with different set of parameters.
9. FIR filter design using rectangular, Hamming and Blackman windows.

Hardware Laboratory using Xilinx FPGA:

1. Writing of small programs in VHDL and downloading onto Xilinx FPGA.
2. Mapping of some DSP algorithms onto FPGA.
Course Name: Computer Communication & Networking (Prof Elective 1)

Course Code: ECEN3231

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Course outcomes:
The students will acquire understanding of the following:
1. Overview of data communication, standards, networks etc.
2. Errors, correction, detection methods.
3. Protocols – ALOHA, CSMA/CD etc.
4. Routing, ISDN, WLAN etc.

Module I [8 L]:
Overview of Data Communication and Networking: Introduction; Data communications: components, data representation (ASCII, ISO etc.), direction of data flow (simplex, half duplex, full duplex); network criteria, physical structure (type of connection, topology), categories of network (LAN, MAN, WAN); Internet: brief history, Protocols and standards; Reference models: OSI reference model, TCP/IP reference model, their comparative study. Physical Level.

Module II [10L]:
Overview of data (analog & digital), signal (analog & digital), transmission (analog & digital) & transmission media (guided & unguided); Circuit switching: time division & space division switch, TDM bus; Telephone Network; Module II Data link Layer: Types of errors, framing (character and bit stuffing), error detection & correction methods; Flow control; Protocols: Stop & wait ARQ, Go-Back- N ARQ, Selective repeat ARQ, HDLC; Medium Access sub layer.

Module III [10L]:
Point to Point Protocol, LCP, NCP, Token Ring; Reservation, Polling, Multiple access protocols: Pure ALOHA, Slotted ALOHA, CSMA, CSMA/CD, CSMA/CA Traditional Ethernet, fast Ethernet (in brief); Module III Network layer: Internetworking & devices: Repeaters, Hubs, Bridges, Switches, Router, Gateway; Addressing: IP addressing, sub-netting.

Module IV [10L]:
Books:
4. Zheng & Akhtar, Network for Computer Scientists & Engineers, OUP
5. Black, Data & Computer Communication, PHI
Course Name: Computer Architecture (Prof Elective 1)
Course Code: ECEN3232

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Course outcomes:
The students will acquire understanding of the following:
1. Overview of computer architectures, BUS, ALU etc.
2. Memory – types of memories, cache, virtual memory etc.
3. Pipeline concept, RISC, CISC, Flynn’s classification.
4. VHDL programming, processor architectures like superscalar.

Module I[8L]:
Computer Organization & Architecture, Basic functional Unit, Computer component structure [Eg. Structure of IAS Computer, IBM Machine configuration], Harvard & Von Neumann architecture, BUS architecture, ALU designs [combinational ALU & sequential ALU], Instruction set: Instruction format & types

Module II[10L]:
Memory Organization: Memory system overview, Cache memory organizations, Techniques for reducing cache misses; Hierarchical memory technology: Inclusion, Coherence and locality properties; Virtual memory organization, mapping and management techniques, memory replacement policies

Module III[8L]:
CPU Organization: Fundamentals, Processor-memory communication [Clock cycles and Timing Diagram], Instruction cycle, RISC & CISC based architecture. Pipelining: Basic concepts, instruction and arithmetic pipeline, data hazards, control hazards and structural hazards, techniques for handling hazards, Flynn’s classification –SISD, SIMD, MISD, MIMD architectures, Pipeline optimization techniques.

Module IV[10L]:
Instruction-level parallelism: basic concepts, techniques for increasing ILP, superscalar, super pipelined and VLIW processor architectures, Array and Vector processors. Overview of HDL: VHDL basics programming concept, Structural, dataflow, behavioural & mixed style modeling techniques.

Text & Reference books:
2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky —“Computer Organization”, 5/e, MGH
5. Pedroni---“Circuit Design And Simulation With VHDL”, 2/e, PHI
Course Name: Real Time Embedded Systems (Prof Elective 1)
Course Code : ECEN3233

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Outcomes:
Students will come to know about:
1. Basics of embedded and real time system.
2. Interface between common hardware.
3. System modeling using modern graphical tools.
4. Real time operating system.

Module I [8L]:
Introduction to Embedded System: Embedded system VS General computing systems, Purpose of Embedded systems, Design challenge – optimizing design metrics, embedded processor technology, Microprocessor and Microcontroller, Hardware architecture of the real time systems. A/D converter and D/A Converter, RISC vs CISC.

Module II [12L]:

Module III [10L]:

Module IV [8L]:
Real Time Operating Systems: Operating system basics, Tasks, Process and Threads, Multiprocessing and multitasking, task communication, task synchronization, qualities of good RTOS. Resource Management/scheduling paradigms: static priorities, static schedules, dynamic scheduling, best effort current best practice in scheduling (e.g. Rate Monotonic vs. static
schedules), Real-world issues: blocking, unpredictability, interrupts, caching, Examples of OSs for embedded systems - RT Linux, VRTX, Mobile phones, RFID.

Reference Books:

5. Introduction to Embedded Systems : Shibu K. V. (TMH)
7. Embedded Systems : Rajkamal (TMH)
9. Embedded System design : S. Heath (Elsevier)
10. Embedded microcontroller and processor design: G. Osborn (Pearson)
11. ARM System-on-Chip Architecture, Steve Furber, (Pearson)
Course Name: Telecommunication Systems (Prof Elective 1)
Course Code: ECEN3234

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Outcomes:
Students will come to know about:
1. Fundamentals of telecom. Systems, switching systems, exchanges etc.
2. Transmission lines and loop systems.
3. ISDN, PABX, FAX, ADSL etc.
4. Traffic engineering.

Module I: (10L)
Introduction to Telephone and Switching Systems

Module II: (8L)
Telecommunication Transmission Lines and Subscriber Loop Systems (8L)
Copper, co-axial and Fiber-Optic cables, Transmission Fridge- Hybrid Circuit for 2-wire to 4-wire conversion and vice versa. PCM Carriers, American and European standards of carrier channels.
BORSCHT Functions, Switching Hierarchy and Routing, Signaling Techniques- In channel and Common Channel Signaling, Signaling System 7 (SS7).
Introduction to Global Telecom Link through Satellite Networks

Module III: (10L)
Stored Program Control
Software architecture, Application Software, Electronic Exchanges, Introduction to Cordless Telephones and Digital PABX.
INTRODUCTION TO NEW GENERATION OF ELECTRONIC EXCHANGES- EWSD (ELECTRONIC WORLDWIDE SWITCH DIGITAL), NGN (NEXT-GENERATION NETWORK)

Module IV: (8L)
Traffic Engineering
Blocking network, Blocking Probability, Grade of Service, Traffic Load, Erlang-B congestion formula- case studies
Text Books:
 a) T. Viswanathan “Telecommunication Switching System and Networks”, PHI
 b) J.C Bellamy “Digital Telephony” – Wiley India

Reference Books:
 a) O Hersent, D Gurle, J P Petit “ IP Telephony” Pearson
 b) J. E Flood “ Telecommunication Switching, Traffic and Networks” Pearson
 c) R L Freeman “ Telecommunication System Engineering” Wiley-India
 d) A Gokhale “ Introduction to Telecommunication” – Cengage Learning
Course Name: Fiber Optic Communication (Prof Elective 2)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>ECEN3241</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Hours</td>
<td></td>
</tr>
<tr>
<td>per week</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Course Outcomes:
Students will come to know about:
1. Basics of optical fiber communication.
2. Different optical sources and the differences.
3. Types of optical detectors.
4. Optical networks and their comparison.

Module I [6L]:
Introduction to communication systems: Principles, components; Different forms of communications in brief, advantages of optical fiber communication, spectral characteristics. Optical Fiber wave guide: Planar & Cylindrical, Structure & fabrication of optical fiber, Single and Multimode operation; Attenuation, Material and wave guide dispersion. Fiber splices, Fiber optic connectors, OTDR.

Module II [10L]:
Optical Sources: Light Emitting Diode; principle, structures, power and efficiency, Surface Emitting LED and Edge emitting LED, Super luminescent diode (SLD), coupling of LEDs to fibers. Modulation response of an LED. Laser diodes; principle, double heterostructure, gain and index guiding, distributed lasers. Quantum Well Lasers; Modes and narrow linewidth lasers. Modulation; Bandwidth for modulation, Optical transmitters: components.

Module III [12L]:
Optical Detectors: Photo diodes, Photo conducting detectors, Photo Transistors, optical detection principles, efficiency, responsivity, bandwidth. Pre-amplifiers; noise sources, signal to noise ratio. Point-to-point link and Wavelength Division Multiplexing: Building blocks; Multiplexing; Intensity Modulation/Direct Detection system; Principle of Regeneration; WDM link, Optical amplifiers; EDFA, SOA, Raman amplifier, Fabry-Perot filters. Dispersion compensation and management, Link analysis and Bit-Error-Rate calculation.

Module IV [8L]:
Optical Network: [4] LAN, MAN, WAN; Topologies: bus, star, ring; Ethernet; FDDI; Telecom networking:SDH/SONET; Different forms of access networks; [4] Telephony; ISDN; Cable TV; Broadcast and Switched Networks; HFC networks.

Books:
1. Optical Networks – A practical perspective : Rajiv Ramaswami, K. N. Sivarajan, Galen H. Sasaki (Morgan-Kaufman)
2. Optical Fiber Communication : John M. Senior (Pearson)
4. Fiber Optics and Optoelectronics, R. P. Khare, Oxford University Press
Course Name: Power Electronics (Prof Elective 2)

Course Code: ECEN3242

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Outcomes:
Students will come to know about:
1. Power control devices.
2. Rectifiers – types, PF, inversion etc.
3. DC line commutation, choppers, three phase circuits.
4. Inverters, SMPS etc.

Module I [10L]:

Module II [10L]:

Module III [8L]:

Module IV [8L]:

BOOKS:
1. Rammurthy M – An Introduction to Thyristors and their applications
2. Lauder C W - Power Electronics, 3rd Edn. MHI 1993
3. Sen P C – Power Electronics, TMH
5. Dubey S K – Thyristorised Power Controller; John Wiley & Sons
Course Name: Antenna Design and RADAR Technology (Prof Elective 2)

Course Code: ECEN3243

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Outcomes:
Students will come to know about:
2. Types of antennae and antenna arrays – their operation.
3. Helical, TW, spiral, sectoral antenna etc.
4. Radar – types and operation.

Module-I [10L]:

A. Review of Maxwell’s Equation; Radiation of e.m waves and introducing Antenna; Vector Potential and Retarded Vector Potential; Radiation fields of a Hertzian dipole(electric); Duality Principle, Radiation fields due to short magnetic dipole.
B. Antenna Characteristics: Radiation Pattern, Beam Width; Radiation Resistance and efficiency; Directivity and Gain; Impedance, VSWR, Polarization; Effective height and Receive Aperture; Return Loss, Impedance Bandwidth.

Module- II [10L]:

A. Radiation fields and Characteristics of λ/2 dipole; discussion on λ/4 monopole antenna; Current distribution and Radiation patterns of center-fed dipoles of length λ, 3λ/2 and 2 λ. Horizontal and Vertical antennas over a plane ground.
B. Antenna Arrays: electric Field due to 2 element arrays, 3 element Arrays; Pattern Multiplication; Uniform Linear Array: End fire and Broad side; Phased array.

Module- III [10L]:

A. Characteristics and properties of : Travelling Wave Antenna, Helical Antenna, Folded Dipole, Yagi-Uda Array, Loop Antenna, Electrically Short Antennas, Broad Band Antenna (Log periodic Antenna), Rhombic Antenna, Microstrip Patch Antenna.
B. Radiation from an aperture: Sectoral and Pyramidal Horn Antennas, Design of Optimum Horn Antenna; Parabolic and Corner Reflectors and feed systems.

[Major stress on Characteristics features, applications (including frequency at which used), advantages and disadvantages, major design principles and equations (without long and detailed derivations)]
Module-IV [10L]:
A. Historical background, radar terminology, radar band designations, Radar block diagram, Radar Range equation: detection of signals in noise and signal-to-noise ratio, Radar cross section, distributed targets, Transmitted power, pulse-repetition frequency, antenna parameters & system losses. Radar display, Radome, Different system losses in a radar system, Different scanning mechanism for radar antenna.

B. Pulse radars and CW radars, Advantages of coherent radar, Doppler radar and MTI: Doppler effect, delay-line cancellers, blind speed, Moving Target Detector, limitations of MTI. Mono pulse radar, Phased array radar.

Recommended (Text Books)
1. Antenna (for all application), John D. Kraus and Ronald J. Marcfka; Tata- MacGraw Hill, 3rd Edition
2. Antenna & Wave Propagation, K.D Prasad; Satya Prakashan, New Delhi, 3rd Edition
3. Antenna Theory: Analysis & Design, Constantine A. Balanis; Willey, 3rd Edition

Reference Book
Course Name: Object Oriented Programming using C++
Course Code: CSEN3004

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Module-I:
- **Overview of Object Oriented Concepts** [2L]
 - Difference between OOP and other conventional programming – advantages and disadvantages
 - Class, object, message passing, inheritance, encapsulation, polymorphism
- **Basic Programming with C++** [6L]
 - Data Types, Operators
 - Control Statements and Loops
 - Functions and Parameters
 - Arrays, Pointers and References
 - String Manipulation

Module-II:
- **Classes and Objects** [10L]
 - Fundamentals of Class and Object
 - Abstraction, Encapsulation, Access Specifier
 - Static Member and Friend Function
 - Constructor and Destructor

Module-III:
- **Overloading and Inheritance** [8L]
 - Function Overloading
 - Operator Overloading
 - Inheritance
 - Derived Class
- **Polymorphism and Overriding** [4L]
 - Abstract Class
 - Runtime Polymorphism
 - Virtual Base Class
 - Overriding

Module-IV:
- **Exception Handling** [2L]
- **Namespace** [2L]
- **Templates** [4L]
 - Class Template
 - Function Template

Textbooks / References:
4. Steve Oualline – “Practical C++ Programming” – O’Reilly
5. James Rambaugh & Michael Blaha – "Object Oriented Modeling and Design” – Prentice Hall, India
Course Name: OOPs Laboratory
Course Code: CSEN3014

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Assignments on: [based on Lectures]
1. Basic Programming
2. Class
3. Constructor
4. Overloading
5. Inheritance
6. Polymorphism
7. Overriding
8. Exception Handling
9. Templates

Note: use C++ for programming to carry out assignments based on lectures
Course Name: Principles of Management
Course Code: HMTS3201

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Module I:
Management: Definition, nature, purpose and scope of management, Skills and roles of a Manager, functions, principles; Evolution of Management Thought: Taylor Scientific Management, Behavioral Management, Administrative Management, Fayol’s Principles of Management, Hawthorne Studies. (4L)

Module II:
a) Planning: Types of plans, planning process, Characteristics of planning, Traditional objective setting, Strategic Management, premising and forecasting.
b) Organizing: Organizational design and structure, Coordination, differentiation and integration.
e) Coordinating: Concepts, issues and techniques.
f) Controlling: Concept, planning-control relationship, process of control, Types of Control, Control Techniques (8L)

Module III:
Span of management, centralization and de-centralization Delegation, Authority & power - concept & distinction, Line and staff organizations. (4L)

Module IV:
Organization Behaviour: Motivation, Leadership, Communication, Teams and Team Work. (6L)

Module V:
Management by Objectives (MBO): Management by exception; Styles of management: (American, Japanese and Indian), McKinsey’s 7-S Approach, Self Management. (2L)

Evaluation:
Max. Marks-100
Internal Test-30
Semester End Test-70
Suggested Readings:
2. Stoner, Freeman, Gilbert Jr., Management, PHI.
3. Bhatt & Kumar, Principles of Management, OUP.

2. Design of regulated DC power supply and measurement of ripple factor, efficiency etc.

3. Design of active filters of types i) LPF ii) HPF iii) BPF and plotting frequency Vs. output characteristics of the filters against given design parameters.

4. Design of digital sequencers and practical implementation of reduction techniques like Karnaugh Map.

5. Application circuits using timer ICs.
Course Name: Personality Development
Course Code: HMTS3221

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module I
Self-Growth
i) Self Growth- Maslow’s Hierarchy of Needs Theory

ii) Anger, Stress & Time Management- Theories and application

iii) SWOT Analysis

Module II
Stepping Up
i) Growth & Environment

ii) Competitive Spirit

iii) Responsibility Factor

Module III
Professional Communication
i) Impression Management- theory on social psychology

ii) Employability Quotient

iii) Cross-cultural communication

Module IV
Leadership & Team Playing
i) Leadership & Team Playing: Theories, Styles, Stages

ii) Motivation, Negotiation Skills, Conflict Management

iii) Planning & Envisioning: Initiative and Innovation in the Work Environment- De Bono’s Six Thinking Hats

Evaluation:
Max. Marks- 100 (sessional)
25 marks/ module

Methodology: Assignment and project

Suggested Reading
1. Personality Development and Soft Skills by Barun K. Mitra, Oxford University, 2011

ECE, B.Tech. Final year Syllabus, 1st. Semester

Course Name : RF & Microwave Engineering
Course Code : ECEN 4101

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Course outcomes:
The students are expected to acquire the following upon completion of this course:

a) An understanding of waveguides as transmission lines and the concept of modes.
b) Passive microwave devices using waveguides and their analysis techniques.
c) Design procedure of filters and amplifiers at microwave frequencies.
d) Microwave vacuum tube and semiconductor devices.
e) An ability to apply knowledge of mathematics, science and engineering in the areas of electronics and communication engineering.
f) An ability to analyze a situation and interpret data.
g) An ability to learn and apply modeling based approach through extensive use of simulator tools.
h) An ability to understand and participate in new path breaking research work in new areas of communication engineering.
i) Imbuement of a passion to pursue learning for life.

<table>
<thead>
<tr>
<th>Module</th>
<th>Topics</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RF & Microwave Spectrum, Typical applications of RF and Microwave Engineering, Safety considerations</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Waveguides and Resonators</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Rectangular waveguides, TE & TM modes, TE_{10} mode analysis, cut-off frequency, propagation constant, intrinsic wave impedance, phase and group velocity, Power transmission, attenuation, waveguide excitation, wall current; Introduction of circular waveguide; Rectangular waveguide resonator- Design consideration, resonant frequency, Q-factor, excitation. Circular waveguides, TE_{11} mode analysis. Rectangular waveguide resonator- Design consideration, resonant frequency, Q-factor, excitation.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Planar Transmission Lines</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Micro-strip lines, Coplanar waveguide, Slot line-design consideration, field patterns, propagation characteristics, Comparison for different characteristics of the above mentioned lines</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Waveguide Passive Components and their S-matrix Representation</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>N-port networks-Properties of S matrix, Transmission matrix & their relationships; Microwave passive components and their S matrix representation: Attenuators, Phase shifter, Directional coupler, Bethe-hole coupler, Two hole coupler, Magic tee, hybrid ring, Circulators, Isolators</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Impedance Matching Networks</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Stub matching, Quarter wave matching, Introduction to theory of Small Reflections and tapered lines</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Microwave Tubes</td>
<td>5</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Electron beam & Field interaction for energy exchange in resonant (two cavity klystron, Reflex Klystron, Magnetron) and TWT microwave active devices: Typical characteristics & applications (only physical explanation is required, no mathematical derivation required).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Semiconductor Microwave devices</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TED (Gunn diode) & Avalanche Transit Time (IMPATT) device, Schottky diode, PIN diode characteristics & applications; Microwave bipolar transistor, Microwave field effect transistor (MESFET)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwave Filter Design</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Design procedure of filter design using insertion loss method (maximally flat and equiripple), low pass prototype design, conversion to other filter prototypes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwave Amplifier Design</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Basic consideration in the design of RF amplifier- Transistor S-parameter, Stability, matching network, noise figure; Matching network design using lumped elements and L-Section. Brief introduction to NBA, LNA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Text Books:
1. Microwave Engineering, 3rd edition David M. Pozar, Wiley & Sons Inc.
3. Microwave Engineering, A Das & S Das, TMH.
4. Microwave Devices & Circuits, SY Liao, Pearson Education / PHI
5. Microwave Engineering Fundamentals, Design and Applications, Subal Kar, University Press

Reference Books:
10. Advanced RF & Microwave Circuit Design: The Ultimate Guide to Superior Design, M. Radmanesh, Authorhouse
Course Name : RF & Microwave Engineering Laboratory
Course Code : ECEN 4111

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Determination of phase and group velocities in a waveguide carrying TE_{10} Wave from Dispersion diagram [\omega-\beta Plot].
3. Study of the characteristics of a Reflex Klystron oscillator.
5. Study of a GSM band microwave amplifier.
7. Measurement of coupling factor, Directivity, Insertion loss and Isolation of a Directional coupler using X-band waveguide test bench set up.

Reference Books
1. ML Sisodia & GS Raghuvanshi Basic Microwave Techniques and Laboratory Manual; Wiley Eastern Limited 1987
2. EL Gintzton Microwave Measurements, McGraw-Hill Book Co.
Course Name: Information Theory and Coding
Course Code: ECEN 4102

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcome:

- Derive equations for entropy mutual information and channel capacity for all types of channels.
- Distinguish between different types of error correcting codes
- Explain various methods of generating and detecting different types of error correcting codes
- Formulate the basic equations of linear block codes, Cyclic codes.
- Learn the basics of convolution code, linear algebra and BCH code.

Syllabus:

1. Information theory, Source coding and channels [10L]
 Uncertainty and information, measure of information, average, mutual information and entropy, information measures for continuous random variables, source coding theorem, Huffman codes, Shannon-Fano coding.
 Channel models, channel capacity, channel coding, information capacity theorem, The Shannon limit.

2. Linear Block Codes [7L]
 Matrix description of linear block codes, parity check matrix, decoding of a linear block code, Syndrome and Error detection, Minimum distance, Error detecting and Error-correcting capabilities, Standard Array, equivalent codes, perfect codes, Hamming codes.

3. Cyclic and Convolutional Codes [10L]
 Code Polynomials, Generator Polynomials, Division algorithm for polynomials, a method for generating cyclic codes, matrix description of cyclic codes, Decoding of cyclic codes, Golay codes, LFSR.
 Tree codes, Trellis codes, Polynomial description of convolutional codes, Distance notions for convolutional codes, the generating function, decoding of convolutional codes, distance and performance bounds for convolutional codes, examples of convolutional codes, Turbo codes, Turbo decoding.

4. Linear Algebra and BCH code: [11L]
 Introduction to Linear Algebra, Introduction to Galois Field, Primitive elements, generator polynomials in terms of minimal polynomials, Calculation of minimal polynomial.
 Elementary concept of BCH Codes, Encoding and Decoding, Elementary concept of Reed Solomon Code.
Books:
1. Information theory, coding and cryptography - Ranjan Bose; TMH.
2. Information and Coding - N Abramson; McGraw Hill.
3. Introduction to Information Theory - M Mansurpur; McGraw Hill.
4. Information Theory - R B Ash; Prentice Hall.
5. Introduction to Error Control Codes – S Gravano; Oxford Press
Course Name: Advanced Communication Systems
Course Code: ECEN 4103

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcome:
1. The students will learn about the evolution of radio communication.
2. They will be able to appreciate the challenges of RF communication.
3. Different wireless networks and their operations will be clear to them.
4. The students will learn about the new technologies like SDR and Cognitive radios.
5. They will be able to understand the functioning of WI-FI networks.
6. Our students will be able to take up research work in communication domain.

MODULE – I:

Cellular Mobile Wireless Networks: Systems and Design Fundamentals:

Brief introduction to mobile wireless communication and systems, Description of cellular system, Cellular Structure, Frequency Reuse, Cell clustering, Capacity enhancement techniques for cellular networks, cell splitting, antenna sectoring, Co-channel and Adjacent channel interferences, Channel assignment schemes, mobility management, location management and handoff management. (6L)

Characteristics of wireless channel and propagation path loss models:

Fading, different types of fading, Inter symbol interference, fast fading model, Doppler effect due to velocity of mobiles, Rayleigh envelop, free space propagation model, two ray ground reflection model, log distance path loss model, log normal shadowing model, types of base stations and mobile station antennas.

(4L)

MODULE – II:

Modern Mobile Wireless Communication Systems:

Evolution strategies – First Generation (1G) to Fourth Generation (4G), Introduction to SDR, Introduction to CR. (3L)

Multiple Access Technologies in cellular communication
Time division multiple access (TDMA), variants like narrowband and wideband TDMA, Frequency division multiple access (FDMA), Code Division Multiple Access (CDMA), Direct-sequence CDMA, spread spectrum technique, spectral efficiency of different wireless access technologies. (3L)

Cellular Communication Networks and Systems
Second generation (2G) Network: Global system for mobile communication (GSM): Architecture and Protocols, Air Interface, GSM spectrum, GSM Multiple Access Scheme, GSM Channel Organization, Traffic Channel multi-frame, Control (Signalling) Channel Multi-frame, Frames, Multi-frames, Super-frames and Hyper-frames, GSM Call Set up Procedure, Location Update Procedure, Routing of a call. (3L)

The concept of Packet data Services: 2.5G General Packet Radio Services GPRS network architecture, GPRS interfaces and reference points, GPRS Mobility management procedures, GPRS attachment and detachment procedures. (3L)

Overview of CDMA systems: IS-95 Networks and 3G – The Universal Mobile Telecommunication System (UMTS) CDMA based IS-95 Systems, forward link and reverse link for IS-95, handoff process in CDMA based IS-95 network. UMTS Network Architecture – Release 99, UMTS Interfaces, UMTS Network Evolution, UMTS FDD and TDD, UMTS Channels, Logical Channels, UMTS Time Slots (3L)

Module III:

Wireless Local Area Networks (WLAN): IEEE 802.11 Standards and Protocols

IEEE 802.11 standards, WLAN family, WLAN transmission technology, WLAN system architecture, Collision Sense Multiple Access with Collision Detection (CSMA/CD) and CSMA collision avoidance (CSMA/CA), Frequency Hopping Spread Spectra, 802.11 PHY and MAC layers, IEEE 802.11 Distributed Coordination function (DCF) and Point coordination function (PCF), Back off algorithm. (4L)

Wireless Broadband Networks and Access:
Evolution of broadband wireless, IEEE 802.16 standards: WiMAX, Spectrum Allocation, IEEE 802.16 Standard Architecture, Overview of WiMAX PHY, IEEE 802.16 MAC Layer, IEEE 802.16, Orthogonal Frequency Division Multiple Access (OFDMA) (3L)

MODULE – IV:

Mobile Internet Protocol
Basic Mobile IP, Mobile IP Type-MIPv4 and MIPv6, Mobile IP: Concept, Four basic entities for MIPv4, Mobile IPv4 Operations, Registration, Tunneling, MIPv4 Reverse Tunneling, MIPv4 Triangular Routing, Configuring PDP Addresses on Mobile Station, Mobility Classification, Seamless Terminal Mobility Management, Limitations of current TCP/IP networks for mobility support, Mobility solution. (4L)
TEXT BOOKS:

1. Wireless Networks: Applications and Protocols,
 T.S. Rappaport, Pearson Education
2. Wireless Communication and Networks : 3G and Beyond,
 I.Saha Misra, TMH Education.
3. Wireless Communications :
 Principles and Practice,
 T.S.Rappaport, PHI Learning.
4. Wireless Communications,
 A. Goldsmith, Cambridge University Press.
5. Mobile Communication Engineering
 W.C.R Lee (TMH)

REFERENCE BOOKS:

1. Wireless Digital Communications: Modulations and Spread
 Spectrum Applications, K. Feher, Prentice Hall.
2. Wireless Communications
 and Networking, J.W.Mark
 and W. Zhuang, PHI.
<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Outcomes:

- The students will be able to correlate different theories of wireless communication and fiber optics with practical experiments
- They will understand operations of repeater station, GPS and GSM cellular systems
- They will learn the procedures for testing radio parameters
- Students will learn working of fiber optic links
- They will understand bending losses, NA

List of Experiments:

1. Study of working of Repeater stations with the help of Satellite communication system

2. Study of Global system for Mobile (GSM) system along with waveforms of different timing signals

3. Study of Global Positioning System (GPS) and plotting of active satellites with SNR etc.

4. Measurement of some important receiver parameters of a radio receiver like:

 i) SNR ;ii) Distortion with ISM band radio.

5. Measurement of some important transmitter parameters of a radio receiver like:

 VSWR for i) different antennae and ii) at different frequencies with ISM band radio.

6. Measurement of propagation loss, bending loss and connector loss in an optical fiber

7. Study of LASER characteristics
8. Measurement of wavelength of an optical fiber source

9. Study of a fiber optic analog link, study of PAM

10. Study of Frequency Division Multiplexing (FDM) and De multiplexing

11. Study of a fiber optic data link and study of TDM

12. Measurement of numerical aperture of an optical fiber

At least, 8 experiments are to be carried out in the semester.
Course Name: Professional Development
Course Code: HMTS4121

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Module 1: Professional Growth
- Goal Setting: Characteristic of goals, Short-term and long-term goals, Goal-achievement timeline
- Skill identification and Skill up gradation: Washington Accord and Skills for engineers (generic and specific), Local and global skills, Knowledge sources such as MOOC, NPTEL
- Career Planning: Vision and mission, Skill mapping to job profile, Basic and add-on qualifications, Career growth, Self-appraisal, Lifelong learning

Assessment - Activity (20 marks)

Module 2: Entrepreneurship
- The start-up ecosystem in India: Why entrepreneurship?, Indian tech start-up landscape, Stand-up India policies, funding agencies, market development, trends and best practices
- E-Commerce: India as a growing e-commerce market, Possibilities of growth, funding, niche retailers
- Make in India: New processes, Investments, Focus sectors, Makers of Make In India, Opportunities, Policies

Assessment - Project (30 marks)

Module 3: Industry specific opportunities
- Industry prospects in India and Beyond
- Industry-specific job opportunities
- Research & Development
- Other opportunities

Assessment - Presentation (30 marks)

Module 4: Working and living happily
- Managing crisis: Organisational and personal crisis, Analysing crisis, Turnaround strategies, Learning from crisis as opportunity
- Work-life balance: Performance-expectation management, Personal and professional goal-mapping
- Understanding happiness: Components, Conflicts, Happiness Index

Assessment: Activity/case (20 marks)
Suggested Reading:

1) Basic Managerial Skill for All by E. H. McGrath SJ. Pub: PHI, New Delhi.
4) Crisis Management: Planning for the Inevitable by Steven Fink. Pub: iUniverseInc.USA.
FREE ELECTIVES (Offered by ECE department) IN THE FIRST SEMESTER:

<table>
<thead>
<tr>
<th>Course Name:</th>
<th>VLSI Design Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>ECEN 4181</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Module I: VLSI Circuits & Physical Layout: [12L]
- **Unit 1:** MOS Transistor Characteristics, MOS as Digital Switch, NMOS Logic Family, CMOS Logic Family, CMOS Inverter Characteristics (VTC), Inverter Delay & Noise, NAND and NOR gates, Complex Logic Circuits, Pass Transistor Logic & Transmission Gate, CMOS Sequential Circuits, CMOS D-Latch and D-Flip-Flop
- **Unit 2:** CMOS Cross Section, Layout and Mask layers, Inverter Layout, Lambda Rule vs Micron Rule, Std Cell Layout Topology, Stick Diagram, Euler Path Algorithm, Layout Legging.

Module II: VLSI Design Methodology: [8L]
- **Unit 1:** Moore’s Law, Scale of Integration (SSI, MSI, LSI, VLSI, ULSI, GSI), Technology growth and process Node,
- **Unit 2:** Full Custom Design, Std Cell based Semi Custom Design, Gate Array Design, PLD, FPGA: CLB, LUT, MUX, VLSI Design Cycle, Y-Chart.

Module III: EDA Tools: High level Synthesis and HDL: [8L]
- **Unit 1:** High level Synthesis EDA Flow, Control and Data Flow Graph, Scheduling, Allocation, Binding, RTL

Module IV: EDA Tools: Logical Synthesis and Physical Design Automation: [12L]
- **Unit 1:** Combinational Logic Optimization: BDD: Binary Decision Diagram, OBDD, ROBDD, Technology Mapping: Pattern DAG, Subject DAG, Sequential Logic Optimization
- **Unit 2:** Physical Layout Automation EDA Flow, Partitioning: KL Algorithm, Floor-planning cost function, Placement, Detailed Routing: Channel Routing, Horizontal Constraint Graph, Vertical Constraint Graph, Cyclic Constraint, Left-edge Algorithm, Global Routing: Steiner Tree, Maze Routing.

Text Book:

Reference Book:
11. VLSI Design and EDA TOOLS, Author: Angsuman Sarkar, Swapnadip De, Chandan Kumar Sarkar, SCITECH PUBLICATIONS (India) Pvt. Ltd., 2011
Course Name: Control Systems

Course Code: ECEN 4182

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
The students will acquire understanding of the following:

3. Control systems, mathematical models and transfer functions
4. Analysis techniques – different domains
5. Control design techniques
6. State space analysis

MODULE – I

INTRODUCTION

Concepts of Control Systems- Open Loop and Closed Loop Control Systems - their differences-Different examples of Control Systems - Classification of Control Systems, Feed-Back Characteristics, Effects of feedback.

Mathematical models – Differential equations, Impulse Response and Transfer Functions Translational and Rotational mechanical systems.

[4L] Transfer function representation:
LTI system- its advantage in analysis. Laplace transform- its use in transfer function analysis. Transfer Function of linear systems- presence or absence of initial condition.
Block diagram representation of systems considering electrical systems as examples - Block diagram algebra – Representation by Signal Flow Graph - Transfer function using Mason’s Gain Formula. [5L]

MODULE -II

TIME DOMAIN ANALYSIS

Stability analysis:
The concept of stability- Difference between absolute and relative stability. – Routh’s stability criterion- its advantages and limitations. Root Locus Technique:
The Root Locus concept - construction of Root Loci-effects of adding poles and zeros to $G(s)H(s)$ on the root loci. [5L]

MODULE – III

Frequency domain analysis:
Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Phase margin & Gain margin-Stability Analysis from BodePlots. [6L]
Polar Plots, Nyquist Plots Stability Analysis. [4L]

MODULE –IV
Classical control design techniques:
Compensation techniques – Lag, Lead, Lead-Lag Controllers design in frequency Domain, PID Controllers. [5L]

State space analysis of continuous time systems:
Concepts of state, state variables and state model, derivation of state models from block diagrams,
Diagonalization- Solving the Time invariant state Equations- State Transition Matrix and its properties – Concepts of Controllability and Observability . [6L]

TEXT BOOKS:

REFERENCE BOOKS:
3. Automatic Control Systems- Basic analysis and design- by A. Wolovich- Oxford University Press.
Learning Outcome: [These are the minimum competence to be developed; the students will be encouraged to learn more and acquire better understanding.]

Module -1: The student will be able to differentiate between base-band transmission and modulation and compute antenna size from knowledge of carrier frequency; (Tutorial: To identify different communication processes based on these two methods and appreciate their relative merit and demerit); The learner will be able to determine the carrier and message frequencies from the expression for AM signals and Angle modulated signals. Given an expression for a modulated signal, the student must be able to recognize the type of modulation. The ability to explain each and every block of the PCM system must be acquired.

Module -2: The student must be able to appreciate the importance of digital modulation over analog modulation in respect of noise immunity (concept); The student will be able to compute the coding efficiency of binary and decimal coding systems; The relative merits and demerits of the different digital modulation techniques to be understood clearly; (Tutorial: Students should be encouraged to find out where these different modulation techniques are used in everyday life); Capability to calculate signal power in digital systems to be mastered.

Module -3: Ability to compute bit rate and baud rate for different signals to be developed; the student must be able to compare between the channel capacity in case of channels of varying band-width and SNR value and predict the maximum data rate possible; The learner must be able to compare the merits and short comings of the basic digital modulation techniques. (Tutorial: Find out the area of applicability for each with reason for such application)

Module -4: Student will be able to calculate the information content, entropy and information rate for given situations; He/she will be able to appreciate the importance of the different line coding and error coding techniques. (Tutorial: Find out the range of applicability).

Module - 1:
Elements of Communication system, Analog Modulation & Demodulation, Analog-to-Digital Conversion. (Basic ideas in brief) [8L]
[Details: Introduction to Base Band transmission & Modulation (basic concept) (1L); Elements of Communication systems (mention of transmitter, receiver and channel); Basic principles of Linear Modulation (Amplitude Modulation) (2L); Basic principles of Non-linear modulation (Angle Modulation - FM, PM) (2L); Sampling theorem, Sampling rate, Reconstruction from samples, Aliasing (1L); Analog Pulse Modulation - PAM,PWM, PPM (2L); Multiplexing - TDM, FDM (1L);]
Module - 2:
Digital Transmission: (8L)
[Details: Basic concept of Pulse Code Modulation, Block diagram of PCM (IL), Concept of Quantisation & Quantisation error, Uniform Quantiser (2L); Non-uniform Quantiser, companding (mention only) (IL); Line coding & properties, NRZ & RZ, AMI, Manchester coding (2L); ISI, Nyquist criterion for zero ISI, Eye pattern, (2L);]

Module - 3:
Digital Carrier Modulation & Demodulation Techniques: [7]
[Details: Introduction to the different digital modulation techniques - ASK, FSK, PSK, DPSK, QPSK (5L); Introduction to QAM (IL); Spread Spectrum Modulation - concept only. (IL).]

Module - 4:
Information Theory & Coding: [8]
[Details: Introduction, News value & Information content (IL); Entropy (IL); Mutual information (IL); Information rate (IL); Shannon-Fano algorithm for encoding (IL); Shannon's Theorem - Source Coding Theorem (IL);, Channel Coding Theorem, Information Capacity Theorem (basic understanding only) (IL); Error Control & Coding - basic principle only. (IL);]

Text Books:
1. An Introduction to Analog and Digital Communications by Simon Haykin; Published by Wiley India.
2. Data Communication and Networking by Behrouz A. Forouzan, Published by Tata McGraw-Hill

References:
1. Communication Systems 4th Edition by Simon Haykin; Published by Wiley India (Student Edition)
2. Principles and Analog and Digital Communication by Jerry D Gibson, Published by MacMillan.
ECE, Final Year, B.Tech., 2nd. Semester

Syllabus

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Organizational Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>HMTS-4201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Module I

Introduction to Organizational Behaviour-Concept, Importance, Challenges and Opportunities (1L)
Personality-Meaning of Personality, Personality Determinants and Traits, Psychoanalytic Theory, Argyris Immaturity to Maturity Continuum Impact on organization (2L)
Attitude-Concept, Components, Cognitive Dissonance Theory, Attitude Surveys. (2L)

Module II

Module III

Leadership-Concept, Leadership Styles, Theories-Behavioural Theory: Ohio Studies, Michigan Studies, Blake & Mouton Managerial Grid; Contingency Theory: Fielder Theory. (4L)

Module IV

Organizational Design-Various organizational structures and their pros and cons. Concepts of organizational climate and culture, Organizational Politics-Concept, Factors influencing degree of Politics (2L)
Conflict management- Concept, Sources of conflict, Stages of conflict process, Conflict resolution techniques, Tools-Johari Window to analyse and reduce interpersonal conflict, Impact on organization. (3L)

Evaluation:
Max. Marks-100
Internal Test-30
Semester End Test-70

Suggested Readings:
1) Organization Behaviour by Stephen Robbins
2) Organization Behaviour by Luthans
3) Organization Behaviour by L.M. Prasad
4) Organization Behaviour: Text, Cases & Games by AswathappaK.
Course Name: Remote Sensing using Satellites

Course Code: ECEN42

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcome:
1. To understand the basic principles of Satellite Communication and its various application areas in remote sensing.
2. To understand various parameters associated with remote sensing using satellites through the use of mathematical and logical tools to gain insight into the concept.
3. To learn the basics of remote sensing principles and technologies to acquire knowledge about the important applications for satellite remote sensing in research and the public and private sectors.
4. Gain knowledge about the various remote sensing techniques for applications in improving social, economic and environmental conditions for agricultural, forestry and water body management.

Syllabus:
Module 1: Introduction
Features of Satellite communication systems in relation to other terrestrial systems. Satellite orbits, earth segment and space segment components. Modulation techniques used in satellite Communication. Satellite orbital parameters, orbital perturbations, station keeping, geo stationary and non Geo-stationary orbits – Look Angle Determination (4L)

Module 2: Basics of Remote Sensing
Principles and concepts of Remote Sensing, Sources of energy, Active, passive, ground based and space based remote sensing techniques. Indian Remote sensing satellite systems. Major application of remote sensing in India. Concept of thematic mapping with remote sensed data. (4L)

Module 3: Remote Sensing Technologies
Satellite mounted remote sensors, spatial, spatial, radiometric and temporal resolution, field of
View (FOV). Radiation principles (Plank’s Law, Stephen Boltzman law)
Data Acquisition Platforms: Various types of platforms, different types of aircraft, manned and Unmanned spacecrafts used for data acquisition - characteristics of different types of platforms LANDSAT, SPOT, IRS, ERS, INSAT. Image analysis and interpretation-thermal imaging-image processing, classification and interpretation.
Satellite sensors, detectors and scanning techniques. Radio Occultation (12L)

Module 4: Remote sensing systems

Weather forecasting radars, IR Radiometer Airborne and space borne radar, Satellite TTR (Telemetry, Telecommand and Ranging Stations), LIDAR (light detection and ranging), Acoustic sounding systems, SODAR (Sonic detection and ranging) TRMM (Tropical rainfall measuring mission), AURA MLS, Megha Tropiques, Altimeter, Scatterometer, Radiometer, sea surface temperature, wind speed, water vapour and trace gas measuring systems. Generic software used for Remote sensing. Future trends and research areas (12L)

Total: 36 lectures

Remote sensing of the environment : an earth resource perspective –John R Jenson(Pearson)
Satellite Communication System Engineering W.Pritchrd (Pearson)
Satellite Communication- Manojit Mitra PHI learning Pvt Ltd

Reference: An Introduction to Remote Sensing And Its Applications: S.Somvansh & M.Kumari
(S.K Kataria)
Satellite Communication: Maini & Agrawal (Wiley)
Course Name: COMPUTER ORGANIZATION
Course code: ECEN 4242

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
• Apply the knowledge of binary math operations to solve complex engineering problems.
• Demonstrate programming proficiency using the various addressing modes and data transfer instructions.
• Using the capabilities of the stack, the program counter, and the status register, to show how to execute a machine code program.
• Simulate the processor’s internal registers and operations by use of microprocessor simulator.
• Simulate combinational and sequential logic structures using VHDL or Verilog.
• Design logic circuitry to the processor I/O ports in order to interface the processor to external devices.
• Design the instruction set and associated microinstructions of a computer.
• Apply knowledge of pipeline and vector computing to design parallel computer system.

Module II[12L]: Parallel Processing: Front end-Instruction fetching and Branch Prediction, Back end-Instruction Scheduling and Memory Access, Multiple Processors, Symmetric Processors, Cache Coherence and MESI Protocol [Improve L1 access], Message passing and IPC, Multithreading and Chip Multi-Processor, Clusters, NonUniformMemoryAccess Computer, Vector Computers, IA 64 Architecture.

Module III[8L]:
Multicore Computer organizations: Multicore CPU Organization Fundamentals, Example Compare Intel X86 Multicore Vs ARM 11 MPCore organization, Discuss Hardware and Software Performance Issues.

Module IV [6L]:
Design of a Computer Organization in VHDL/Verilog: Design a single RISC based machine starting from its instruction format, instruction set, addressing mode, Memory Unit, ALU, Control Unit, and proper I/O interface with required BUS system. The implementation of the design is in VHDL/Verilog
Text Books for ECEN 4232

3. Computer Architecture and Organization, 3rd Ed, John P Hayes

Reference Books:

2. High-Performance Computer Architecture, Harold S. Stone

4. Computer Architecture by Morgan Kauffmann
Course Name: Alternative Energy Sources
Course Code: ECEN4243

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcome:

1. Students are expected to have exposure of different types of renewable energy sources.
2. Students are expected to achieve the knowledge of Solar Energy and its applications.
3. Students are expected to know the basic principle of functioning of different types of solar cell.
4. Students are expected to enrich the knowledge about few important advanced solar cell fabrication process steps.
5. Students are expected to design the solar cells and can analyse the performance of Solar cells.

Module- I: Overview of different alternative energy sources:

Module- II: Solar Energy:
Spectrum of electromagnetic radiation, solar radiation data requirements, sun structure and characteristics, solar constant, spectral distribution, sun earth geometric relationship, solar angles, sun’s trajectories in different seasons, zenith solar time, air mass, beam, diffuse and total solar radiation, irradiance, solar radiation on different surfaces at different angles, extraterrestrial radiation. Attenuation of solar radiation by the atmosphere, beam and diffuse components of hourly and daily radiation, clearness index Earth sun energy flux diagram, solar thermal collectors, solar heat pumps & refrigeration, concentrating collectors, overview of solar thermal power systems, photovoltaic energy conversion

Module- III: Physics of Solar Cell:
Introduction to physics of semiconductor devices; Photovoltaic Effect, basics of solar cells, Semiconductor Materials and its properties suitable to solar cells, sources of losses and prevention, III-V & II-VI compound materials suitable for solar cells. Perovskite materials and its application to the solar cell; Carbon nano tube and its application to solar cell.

Module- IV: Different type of solar cell & basic concept of fabrication technology:
Basic concepts of few important fabrication techniques pertain to solar cell- Sputtering, physical vapour deposition (PVD), Chemical Vapour deposition (CVD), Plasma enhanced Chemical Vapour Deposition (PECVD).
Text Books:
2. *VLSI Fabrication Principles Silicon and Gallium Arsenide* – Sorab K. Gandhi. (John Willey & Sons, Inc.)
4. Renewable energy resources – 2nd Edition- John Twidell and Tony Weir (Taylor & Francis)

Reference Books:
FREE ELECTIVES (Offered by ECE department) IN THE SECOND SEMESTER:

<table>
<thead>
<tr>
<th>Course Name: Cellular & Satellite Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code : ECEN 4281</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Module I (8L)

Brief introduction to mobile wireless communication and systems, Description of cellular system, Cellular Structure, Frequency Reuse, Cell clustering, Capacity enhancement techniques for cellular networks, cell splitting, antenna sectoring, Co-channel and Adjacent channel interferences, Channel assignment schemes – Fixed channel, Dynamic channel and Hybrid channel, mobility management – location management and handoff management, handoff process, different types of handoff.

Module II (10L)

Evolution strategies – First Generation (1G) to Fourth Generation (4G), Personal Area Networks (PAN), Low Tier Wireless System: Cordless Telephone, Second Generation (CT2), Digital European Cordless Telecommunications (DECT), Public wide-area Wireless Networks: 1G to 3G cellular networks (4L)

Second generation (2G) Network: Global system for mobile communication (GSM): Architecture and Protocols Air Interface, GSM spectrum, GSM Multiple Access Scheme, GSM Channel Organization (4L)

Overview of CDMA systems: IS-95 Networks and 3G – The Universal Mobile Telecommunication System (UMTS) CDMA based IS-95 Systems, forward link and reverse link for IS-95, handoff process in CDMA based IS 95 network (2L)

Module III: (8L)

Historical background, Basic concepts, Frequency allocation for satellite services, orbital & spacecraft problems, comparison of networks and services, modulation techniques used for satellite communication. Indian satellite Scenario. (4L)

Orbits- Orbital elements, orbital mechanics, geostationary orbit, change in longitude, orbital maneuvers, orbital transfer, orbital perturbations. Launch Vehicles- principles of Rocket propulsion, powered flight, Launch vehicles for communication satellite (4L)
Module IV:

RF link- noise, the basic RF link, satellite links (up and down), optimization RF link, inter satellite link, noise temperature, Antenna temperature, overall system temperature, propagation factors, rain attenuation model. Tropospheric and Ionospheric EFFECT. (5)

Multiple access- FDMA, TDMA, CDMA techniques, comparison of multiple access techniques, error correcting codes. Satellite subsystems and satellite link design- AOC S, TT&C, power system, spacecraft antenna, transponder, Friis Transmission equation, G/T Ratio of Earth stations.(4L)

Books:
Wireless Networks: Applications and Protocols, T. S. Rappaport, Pearson Education
Wireless Communication and Networks : 3G and Beyond, I. Saha Misra, TMH Education.
Satellite communication – D. Roddy (TMH)
Satellite Communication: Maini & Agarwal (Wiley)
Course Name: VLSI DESIGN
Course Code: ECEN 4282

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Module I: VLSI Circuits & Physical Layout: [12L]
Unit 1: MOS Transistor Characteristics, MOS as Digital Switch, NMOS Logic Family, CMOS Logic Family, CMOS Inverter Characteristics (VTC), Inverter Delay & Noise, NAND and NOR gates, Complex Logic Circuits, Pass Transistor Logic & Transmission Gate, CMOS Sequential Circuits, CMOS D-Latch and D-Flip-Flop
Unit 2: CMOS Cross Section, Layout and Mask layers, Inverter Layout, Lambda Rule vs Micron Rule, Std Cell Layout Topology, Stick Diagram, Euler Path Algorithm

Module II: VLSI Design and Test Methodology: [10L]
Unit 1: VLSI Design Cycle, Y-Chart, Full Custom Design, Std Cell based Semi Custom Design, Gate Array Design, PLD, FPGA: CLB, LUT, MUX,
Unit 2: Si Testing: Why Testing, Challenge of Si-Testing, Manufacturing Defects, Die (Inter and Intra) Variation, Yield, DPM, Logical Fault Modelling: Stuck at Faults (D-Algorithm), Bridging Fault, Transistor Stuck open/Stuck Short, ATPG, DFT, Scan Design

Module III: Front-end Design: HDL: [8L]

Module IV: Backend Design: VLSI Memory Circuit: [10L]
Types of Memory, Memory Organization, Memory Folding Criteria, DRAM 4T, 3T, 1T Cell Design Method, SRAM 8T, 6T Cell Design Method, Sense Amplifier Operation: Differential Amplifier based and Latch Based, Multiport Register File Design Challenges, Mask ROM, ROM Programming Techniques, Flash ROM

Text Book:

Reference Book:
2. Digital Integrated Circuit, Design Perspective, Author: M. Rabaey, Prentice-Hall
3. VLSI Design and EDA TOOLS, Author: Angsuman Sarkar, Swapnadip De, Chandan Kumar Sarkar, SCITECH PUBLICATIONS (India) Pvt. Ltd., 2011
Course Name: VLSI TESTING AND VERIFICATION

Course Code: ECEN 4283

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Module I: VLSI Design Methodology: [6L]
- **Unit1**: Moore’s Law, Scale of Integration (SSI, MSI, LSI, VLSI, ULSI, GSI), Technology growth and process Node,

Module II: VLSI Circuits & Physical Layout: [10L]
- **Unit1**: MOS Transistor Characteristics, MOS as Digital Switch, NMOS Logic Family, CMOS Logic Family, CMOS Inverter Characteristics (VTC), Inverter Delay & Noise, NAND and NOR gates, Complex Logic Circuits, Pass Transistor Logic & Transmission Gate, CMOS Sequential Circuits, CMOS D-Latch and D-Flip-Flop
- **Unit2**: CMOS Cross Section, Layout and Mask layers, Inverter Layout, Lambda Rule vs Micron Rule, Std Cell Layout Topology, Stick Diagram, Euler Path Algorithm, Layout Legging.

Module III: VLSI Verification Flows and Static Timing Analysis: [12L]
- **Unit1**: Logic Verification, Circuit Verification, Layout Verification (DRC, LVS), pre-layout simulation, parasitic Extraction and Back-annotation, post layout verification,
- **Unit2**: Timing checks (set-up, hold), process variation study with PVT analysis, Library Cell characterization, Static Timing Analysis: Types of Path for Timing Analysis, Launch path, Capture Path, Longest Path, Shortest Path, Critical Path, Clock Skew

Module IV: Si-Testing: [12L]
- **Unit1**: Why Testing, Challenge of Si-Testing, Manufacturing Defects, Die (Inter and Intra) Variation, Yield, DPM, Combinational Circuit Testing: Logical Fault Modelling: Stuck at Faults (D-Algorithm), Bridging Fault, Transistor Stuck open/Stuck Short, ATPG, Path Delay Fault,
- **Unit2**: Sequential Circuit Testing: DFT, Scan Design, SFF, LSSD-SSF, BIST

Text Books:
Reference Books: