Applied Electronics & Instrumentation Engineering Department

CURRICULAR STRUCTURE FOR M.TECH, PROGRAMME
PART-I: COURSE STRUCTURE
1st Year 1st Semester Syllabus:

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MATH5101</td>
<td>Advanced Mathematical Methods</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>AEIE5101</td>
<td>Micro-Electronic Devices and Circuits</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>AEIE5102</td>
<td>Digital Signals and Systems</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>AEIE5103</td>
<td>Advanced Industrial Instrumentation</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>AEIE5131/</td>
<td>Mechatronics/Measurement and System Design/</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AEIE5132/</td>
<td>Optical Instrumentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEIE5133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Theory 20 0 0 20 20

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>AEIE5111</td>
<td>Process Instrumentation LAB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AEIE5112</td>
<td>Digital Signal Processing LAB</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Laboratory 0 0 8 8 4

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AEIE5121</td>
<td>Seminar-I</td>
<td>0 0 3 3</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Sessional 0 0 3 3 1

Total of Semester 20 0 11 31 25
1st Year 2nd Semester Syllabus:

Theory

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P Total</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AEIE5201</td>
<td>Process Control System Design</td>
<td>4 0 0 4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>AEIE5202</td>
<td>Micro Sensor Science and Technology</td>
<td>4 0 0 4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>AEIE5203</td>
<td>Instrumental Methods of Analysis</td>
<td>4 0 0 4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>AEIE5204</td>
<td>Embedded Systems</td>
<td>4 0 0 4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>AEIE5231/</td>
<td>Digital Image Processing/Industrial Automation Technology/Statistical and Bio-signal Processing</td>
<td>4 0 0 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AEIE5232/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEIE5233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Theory</td>
<td>20 0 0 20</td>
<td>20</td>
</tr>
</tbody>
</table>

Laboratory

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P Total</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AEIE5211</td>
<td>Embedded Systems LAB</td>
<td>0 0 4 4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>AEIE5212</td>
<td>Virtual Instrumentation LAB</td>
<td>0 0 4 4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Laboratory</td>
<td>0 0 8 8</td>
<td>4</td>
</tr>
</tbody>
</table>

Sessional

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P Total</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AEIE5221</td>
<td>Seminar-II</td>
<td>0 0 3 3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Sessional</td>
<td>0 0 3 3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total of Semester</td>
<td>20 0 11 31</td>
<td>25</td>
</tr>
</tbody>
</table>
Theory

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AEIE6131/</td>
<td>Micro-Electromechanical System Design/ VLSI Technology/ Robotics Engineering</td>
<td>L: 4 T: 0 P: 0 Total: 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AEIE6132/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEIE6133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEIE6142/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEIE6143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AEIE6151/</td>
<td>Medical Instrumentation/ Advanced Digital Control/ Nonlinear Control</td>
<td>L: 4 T: 0 P: 0 Total: 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AEIE6152/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEIE6153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Theory</td>
<td>L: 12 T: 0 P: 0 Total: 12</td>
<td>12</td>
</tr>
</tbody>
</table>

Sessional

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AEIE6121</td>
<td>Dissertation Part-I</td>
<td>L: 0 T: 0 P: 12 Total: 12</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Sessional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total of Semester</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 24 Credit Points
2nd Year 2nd Semester Syllabus:

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs per Week</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>AEIE6221</td>
<td>Post-Submission Defense of Dissertation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>AEIE6222</td>
<td>Dissertation (Completion)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>AEIE6223</td>
<td>Comprehensive Viva-Voce</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Sessional

| Total of Semester | 0 | 0 | 24 | 24 | 20 |

Total of Semester
PART-II: DETAILED SYLLABUS
Module I – [10L]

Linear Algebra I:
Definition of Field, Vector Spaces, Subspaces, Linear Dependence, Basis and Dimension, Inner Product Space, Concept of Norm, Gram-Schmidt Orthogonalization Process, QR Decomposition.

Module II - [10L]

Linear Algebra II:
Eigen Values and Eigen Vectors, Singular Value Decomposition, Concept of Positive Semidefinite Matrices, Linear Transformations, Kernels and Images, Rank-Nullity Theorem, Matrix Representation of Linear Transformations, Change of Basis.

Module III-[10L]

Classical Optimization:

Module IV-[10L]

Optimization Algorithms:
Simplex Method, Big-M Method, Concept of Duality in LPP, Interior-Point Methods, Basic Descent Methods.

References:
1. Linear Algebra : Kenneth M. Hoffman, Ray Kunze (Prentice-Hall)
2. Linear Algebra : Seymour Lipschutz, Marc Lipson (SCHAUM’S Outlines, Mc Graw Hill)
3. Matrices and Linear Transformations : Charles G. Cullen (Dover)
5. Introductory Operations Research : H.S.Kasana, K.D.Kumar (Springer-Verlag)

Course Outcome:
After the completion of the course, the students will be able to:

1. Apply Gram-Schmidt Orthogonalization, QR decomposition etc. to different relevant engineering problems.
2. Apply the concept of semi-definite matrices, linear transformation etc. to relevant physical problems.
3. Model and solve non-constrained and constrained optimization problems by classical optimization techniques (e.g. Lagrange Multiplier Method, Gradient Descent Methods etc.).
4. Model and solve engineering optimization problems using different algorithms (e.g. Simplex Method, Big-M Method etc.).
Module I – [10L]

Module II - [8L]
Analysis of Analog Integrated Circuits:
DC analysis and small signal (ac) analysis of 741 Op-amp: Input stage, intermediate (second) stage and output stage – Gain, input-output resistance and frequency response.

Module III-[6L]
Analysis of two stage CMOS amplifier, Design (Synthesis) of analog Integrated Circuit, Digital Building Blocks: NMOS inverter and CMOS inverter.

Module IV-[16L]
Digital Integrated Circuits Analysis: Performance analysis of CMOS inverter, CMOS logic Circuits; Pass-transistor Circuits; Dynamic Logic Circuits. Design: Flip-flops and multi-vibrator circuits; Dynamic MOS Storage Circuit; (Fussable) Programmable logic array; (Fussable) Logic gate array; Introduction to VHDL & FPGA.

References:

Course Outcome:
After the completion of the course, the students will be able to:
1. Detail analysis Op-Amp circuits to understand loading effects in application circuits.
2. Select MOS transistor as per datasheet parameters to design a simple current mirror.
3. Analyze the DC performance of single-stage analog amplifiers containing these circuit elements.
4. Compute terminal voltage and current characteristics for MOS transistors under a variety of conditions.
Module I – [10L]

Discrete-Time Signals and Systems:
Generation of discrete and digital signals, Sampling of continuous time signals and aliasing, Classification of discrete time signals, Mathematical operations on discrete time signals, Discrete time system description, Response of LTI discrete time system, Linear and circular convolution.

Module II - [10L]

Spectrum Analysis and Wavelet Theory:
Introduction to Fourier series and Fourier transform of discrete-time signals (DTFT), Discrete Fourier transform (DFT) - properties and limitations, Fast Fourier Transform (FFT) algorithm. Introduction to time frequency analysis, Short Time Fourier Transform, continuous time Wavelet Transform, Discrete wavelet transform, construction of wavelets, Multiresolution analysis, Application of wavelet transforms.

Module III-[10L]

Design of Digital Filters:
Design methods of FIR and IIR filters, Structures for realization of FIR and IIR filters, Finite word length effect in digital filters.

Module IV- [10L]

Multirate Digital Signal Processing and Discrete Time Random Process:

References:

Course Outcome:
After the completion of the course, the students will be able to:
1. Characterize and analyze the properties of discrete time signals and systems.
2. Understand and apply signal transform algorithms such as discrete Fourier transform (DFT), fast Fourier transform (FFT), discrete wavelet transform (DWT).
3. Design digital FIR and IIR filters according to the given specification.
4. Realize decimator, interpolator and filter banks using multirate signal processing algorithms.
5. Calculate ensemble averages, joint moments, linear mean square estimation; ensemble averages, autocorrelation Matrices, ergodicity, power spectrum, Response of linear systems to random input.
Module I – [10L]

Review of Industrial Instrumentation:
Measurement of Pressure; Temperature; Flow; Level: Classification and modern methods; signal processing circuits.

Module II - [10L]

Measurements and analysis in Thermal Power Plant:
Fuel, Air and steam flows, Drum level, Steam temperature and pressure, Dissolved oxygen, Coal/Oil, Water quality analyzers, Pollution monitoring equipments: O₂, CO and CO₂, SOₓ and NOₓ.

Module III - [12L]

Measurements and analysis in chemical Plant:
Temperature measurements in Distillation column, heat exchanger, Level measurements of liquid –Liquid; Liquid-gas phases etc. Flow and pressure measurement in Pyrolysis, Catalytic cracking, Calibration and Maintenance of process instruments.

Module IV-[8L]

Special Purpose Instrumentation:
Electrical and Intrinsic safety; Zener Barrier; Flame, Fire and smoke detectors, Hydrocarbon (HC) detector; Flame Scanner.

References:
1. Liptak B. G.; Instrumentation Engineers Handbook (Measurement); Chilton Book Co.; 1994

Course Outcome:
After the completion of the course, the students will be able to:

1. Understand the operating principle of commonly used industrial sensors/transducers.
2. Apply the measurement and analysis techniques of different polluting gasses produced by thermal power plant.
3. Know the operation and control of distillation column.
4. Apply the instruments needs for safety purpose of different hazardous area of the plant.
Module I – [11L]

Overview of Mechatronic and Physical System Modeling:
Introduction to System Modeling; Mechanical System, Electrical System, Fluid Systems, Thermal System, Translational and Rotational Mechanical System with spring, damper and mass.

Module II - [12L]

Transducers and Sensors and Actuators:
Introduction to Actuator types and Application Areas, Electromechanical Actuator, DC motor, AC motor, Fluid Power Actuators, Piezoelectric Actuators, Magnetostrictive Actuator, Memory-metal Actuator, Ion-exchange Polymer-metal Actuator, Micro Actuator.

Module III - [8L]

Signal Conditioning Theory, Circuits and Systems:
Introduction to signal conditioning, Voltage divider, Rectification, Diode Voltage Stabilizer, Clipping and Clamping Circuit, Amplifier, Instrument Amplifier, Bridge Circuit, Comparator, Oscillator, Multivibrator. Logic System Design, Synchronous and Asynchronous Sequential System

Module IV - [9L]

Computers and Logic Systems, Software and Data Acquisition:

References:

Course Outcome:
After the completion of the course, the students will be able to:
1. Integrate mechanical, electronics, control and computer engineering to model mechatronic systems.
2. Understand the principles of different types of active as well as passive transducers for design of mechatronic systems.
3. Do the complete design building, interfacing and actuation of a mechatronic system for a set of specifications.

4. Learn different types of interface buses, communication networks, A/D conversions, DAS, data recording and logging etc required for mechatronic systems.
Module I – [4L]
Qualitative and Quantitative aspect of measurement; Input-Output configuration of Measuring Instruments and Instrument Systems; Methods of Correction for Interfering and Modifying Inputs; Standards & Calibration.

Module II - [8L]
Generalized Mathematical Model of Measurement System; Response of Instruments to Periodic and Transient Inputs, Dead-Time Elements, Characteristics of Random Signals, Requirements on Instrument Transfer Function to ensure accurate measurement, Experimental determination of measurement-system parameters, Loading effect under Dynamic conditions.

Module III-[6L]

Module IV-[22L]

References:

Course Outcome:
After the completion of the course, the students will be able to:
1. Formulate the structure of generalized measurement system.
2. Develop the mathematical model of any measuring instrument.
3. Calibrate and give specification of any measurement system.
4. Analyze the measurement data.
Module I – [9L]

Optical Fibers and their Performances:
Principle of light propagation through fiber-different types of fibers and their properties-fiber characteristics-Absorption losses-scattering losses-dispersions-connectors and splicer-fiber termination-optical sources-optical detectors.

Module II - [9L]

LASER fundamentals:
Fundamental characteristics of lasers-Three level and four level lasers-Properties of lasers-laser modes-Resonator configuration-Q switching and mode locking- cavity damping-Types of lasers-gas lasers, liquid laser, solid lasers, semi-conductor lasers.

Module III - [9L]

Industrial applications of LASER:
Laser for measurement of distance, length, velocity, acceleration, current, voltage and atmospheric effect- Material processing -Laser Heating, Welding, Melting and trimming of material-Removal and vaporization.

Module V - [13L]

Optical Fiber, Hologram and Medical applications:
Fiber optic sensors-fiber optic Instrumentation system-Different types of modulators-Inferometric method of measurement of length-Moire fringes-Measurement of pressure, temperature, current, voltage, liquid level and strain.
Holography-Basic Principle-Methods-Holographic Inferometry and application, holography for non-destructive testing-holographic components-Medical applications of laser and tissues interactive.

References:

Course Outcome:
After the completion of the course, the students will be able to:
1. Learn the techniques of communications using optical fiber.
2. Characterize structures and performance of LEDs and lasers.
3. Learn the structures and performance of photo detectors (like photo diode, PIN diode, APD etc).
4. Explain the techniques of measurement of distance, length, velocity, acceleration, current, voltage using laser. Formulate the structure of generalized measurement system.
5. Acquire knowledge on basic principle of holography and its uses in different fields such as nondestructive testing, medical field etc.
1. Study of boiler using Boiler SIM software (MS Window version).
2. Testing & Calibration of Instruments through Automatic test equipments.
3. Characteristics study of various sensors using Microprocessor based Data Acquisition and Control system.
4. Tuning of different simulation process in MATLAB environment.
5. DC motor and Furnace control using PID controller.
6. Dual control scheme for crane position and swing angle control of a Digital pendulum.
7. Studies of Process telemetering and remote control.

Course Outcome:

After the completion of the course, the students will be able to:

1. Understand the activity and importance of Boiler Drum in an industry.
2. Study, calibrate and test the instruments.
3. Study the characteristics of different sensors.
4. Simulate, tune and control different processes.
5. Understand principle of modeling and control.
1. Generations of different types of sequences and operations on them.
2. Simulation of some simple discrete-time systems and investigation of their time domain properties.
4. Design of IIR filters and their realizations.
5. Design of FIR filters and their realizations.
6. Analysis of Finite Word-Length effects.
7. Real Time signal Processing by TI C6713 and Code Composer studio –
8. Introduction to Code Composer Studio as an integrated development environment, Creating projects, writing and compiling programs for the C6713 DSK, Real-time FIR and IIR filtering, Real-time FIR and IIR filtering, The fast Fourier transform (FFT), adaptive filtering, code optimization.

Reference:

Course Outcomes:
After the completion of the course, the students will be able to:
1. Write MATLAB programs to determine time domain properties of the discrete time signals.
2. Determine FFT and DFT of a discrete time signal.
3. Design and implement FIR and IIR digital filters in MATLAB.
4. Implement real time FIR and IIR digital filters and FFT algorithm using DSP kit like C6713 DSK.
The seminar should be on any topic having relevance with Instrumentation engineering and related areas of technology. The topic should be decided by the student and concerned teacher. Seminar work shall be in the form of presentation to be delivered by the student regularly throughout the semester. The candidate will deliver a final talk on the topic at the end of the semester and assessment will be made by a group of internal examiners.

Course Outcomes:

After the completion of the course, the students will be able to:

1. Enhance their presentation and communication skill.
2. Gain information on latest technological upliftment.
3. Strive constantly so as improve the quality of the mentors as well as students.
Subject Name: PROCESS CONTROL SYSTEM DESIGN

<table>
<thead>
<tr>
<th>Paper Code: AEIE5201</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Module I – [10L]
Mathematical Modeling of Processes: The System equations approach, Analytical Approximations, effect of parameter variation; Open loop step response method, frequency response, method, the parameter estimation technique-linear regression, least square regression technique.

Process Dynamics: characteristics of a few processes such as heat exchangers, boilers and condensers, Model analysis and control; System order reductions.

Module II - [16L]
Designing process control systems – different approaches: Supervisory, direct digital, Fuzzy logic, Distributed Computer, Adaptive and self-tuning.
Supervisory control using procedural model and/or economic model, process optimization, various aspects of direct digital control - Hierarchical, multilayer, multilevel etc. Comparison of design strategies and performances.
Control system design with distributed computer networks, local controller, communication data links, control information and display unit; redundancy, reliability, data transfer protocols, standard interfaces, real time languages.

Module III - [10L]
Fuzzy logic process control – main advantages, the approach, the controller design and applications to systems.
Adaptive control – the system identification technique, the model reference technique, self-adaptation, the predictive approach; Design of the self-tuning control systems: Based on (i) Transient response (ii) frequency response (iii) parametric models.

Module IV - [4L]
Variation of algorithm designs, comparisons. Case studies of specific control schemes such as temperature of oven and/or flatness of rolled metal sheets- design details of the algorithm developed and the complete scheme.

References:
2. Elements of Computer Process Control – Deshpande & Ash, ISA.
6. Adaptive Control– Astrom, Pearson, 2nd Ed.

Course Outcomes:
After the completion of the course, the students will be able to:
1. Explain the importance of process mathematical modeling and study the techniques of modeling.
2. Understand the process dynamics in general and analyze it in few industrial applications.
3. Design process control system applying different linear, non-linear and soft-computing techniques.
4. Employ proper system identification technique to identify unknown system and acquire knowledge of computer control.
Module I – [13L]

Overview of Micro-Sensors Engineering Science for Design and Fabrication:
Principle of transduction; classification of micro-sensors; Chemical, thermal, pressure, acoustic, optical, electrical, mechanical, biological sensors, their calibration and determination of characteristics. Atomic structure of matter, Ions and ionization; Molecular theory of matter and intermolecular forces; Doping techniques of semiconductor; The diffusion process; Plasma Physics; ElectroChemistry: electrolysis, electrodynamics.

Module II - [12L]

Micro-Fabrication Process:
IC technology used in micro sensor system; Crystal growth and wafer making, different techniques of deposition; physical vapor deposition - evaporation, thermal oxidation, sputtering, epitaxy, ion implantation and diffusion, LASER ablation; Chemical vapor deposition- LPCVD, APCVD, PECVD, spin coating, electrochemical deposition, Pattern generation and transfer- masking, photolithography: Photoresists and application, light sources, photo resist development and removal; different types of etching: chemical and plasma; Overview of micro-manufacturing techniques: Bulk Micro-machining, Surface Micro-machining, LIGA.

Module III - [8L]

Materials for Micro-Sensors:
Substrates and Wafers; Silicon as substrate material; Silicon Compounds: Silicon dioxide, Silicon Carbide, Silicon Nitride and Polycrystalline silicon, Silicon Piezo-resistors, Gallium Arsenide, Quartz, Piezoelectric crystals, Polymers, Langaur-Blodgett (LB) films, Packaging materials.

Module IV - [7L]

Testing and Packaging & Introduction to Smart Sensors:
Partitioning, Layout, Technology constraints, scaling, compatibility study; Scaling laws in Miniaturization. Examples of selected micro sensors. Introduction; Nature of semiconductor sensor output, information coding, integrated sensor principles, sensor networking, present trends.

References:
2. Stephen Beedy, MEMS Mechanical Sensors, Artech House, 2004

Course Outcomes:
After the completion of the course, the students will be able to:
1. Apply the concepts of IC fabrication in sensor as well as semiconductor technology.
2. Understand the micromachining processes (Bulk/ Surface /LIGA) and fabrication steps viz. deposition (CVD, Stuttering/ epitaxy, ion implantation etc.), lithography, etching (dry/wet, RIE/ DRIE) of micro-sensors.
3. Understand the choice of materials (both semiconductor compounds and polymers) commonly used in fabrication process.
4. Understand the packaging/ testing of microsensors along with signal conditioning circuitry in real time systems.
5. Analyze the application of smart sensors in IoT and medical/ aero-space/ telecommunication/ instrumentation fields.
Module I – [10L]
Classification of analytical instruments,
Basic Analysis Technique: Sample Handling System (SHS), Steam and Water Analysis System (SWAS).
Pollution Monitoring Analyzers: O2, CO, CO2, NOx, SOx measuring analyzers, Particulate Analyzer.

Module II - [8L]
Electromagnetic Radiation and Electromagnetic Spectrum.
Absorption Spectroscopy: transmittance and absorbance, Beer-Lambert law, principle of Infra-Red, Ultraviolet-Visible absorption spectrometry, effects of instrumental noise on analysis, quantitative determination of different analytes, applications in analytical chemistry, biochemistry, etc.
Flame scanner.

Module III - [10L]
Atomic spectroscopy: Introduction to spectrometric methods,
Atomic absorption and Atomic fluorescence spectrometry,
Mass spectrometry: types, principle, instrumentation, identifying elements present in a sample (Organic and inorganic),
X-Ray Spectrometry: fundamental principle, X-Ray absorption spectrometry, X-Ray fluorescence spectrometry, X-Ray monochromator, detectors, applications.

Module IV - [12L]
Gas Chromatography: fundamental of chromatographic separation, qualitative and quantitative analysis, chromatography column, instrumentation, Gas-Solid chromatography, application.
Liquid Chromatography: scope of HPLC, LC instrumentation. Applications in food, pharmaceutical, petrochemical, etc. industries.
Liquid Analyzer: Operating principle (chemistry) of liquid analyzer, Silica, Hydrazine, TOC, Phenol, BOD and Effluent Treatment Plant (ETP) analyzer.

References:
5. Patranabis D.- Principles of Industrial Instrumentation, Tata McGraw Hill, New Delhi

Course Outcomes:
After the completion of the course, the students will be able to:
1. Classify different spectroscopic methods and understand their use.
2. Identify different components of spectrometers and acquire knowledge about their functioning.
3. State the fundamental properties of different types of chromatography and able explain their working principle and application.
Subject Name: EMBEDDED SYSTEMS
Paper Code: AEIE5204

<table>
<thead>
<tr>
<th>Contact hrs per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Module I – [8L]

Introduction to an Embedded System:

Embedded systems overview, design challenge, processor technology, IC technology, Design Technology, Trade-offs. Processors - Application Specific Instruction-Set Processors (ASIPs) Micro Controllers and Digital Signal Processors, Special Purpose Processors, I/O devices.

Module II - [8L]

Introduction to AVR microcontroller:

Introduction to AVR (ATmega 328p-pu) microcontroller, pin layout, architecture, program memory, Data Direction register (DDRx), Port Registers (PORTx), PWM registers (8-bit), ADC registers, basics of communication, overview and interfacing I/O devices with I²C Bus, UART and Serial Peripheral Interchange (SPI) bus, introduction to AVR Studio and avrdude with GNU gcc toolchain.

Module III - [12L]

Embedded Systems Software:

Introduction to Linux based operating systems and Linux commands (i.e. GNU bash), Memory Management, Priority inversion problem, introduction to Embedded Linux (i.e. Arch and Debian) Real-time operating systems, introduction to Python 2.7 - I/O statements, condition statements, loops, functions, classes, Python packages (i.e. serial and os).

Module IV - [12L]

Programming Embedded Systems with AVR (Arduino API), ARM CPUs and case studies:

Introduction to ARMv8-A based embedded development board (i.e. Raspberry Pi rev.3), programming a Raspberry Pi rev.3 using Python 2.7, introduction to Arduino UNO rev.3, case study- speed control of a DC motor using an Arduino UNO rev.3, user defined LED blink using Raspberry Pi GPIOs, communication between an Arduino UNO rev.3 with Raspberry Pi 3 over USB serial.

References:

5. Embedded system design by Arnold S Burger, CMP.

Course Outcomes:

After the completion of the course, the students will be able to:

1. Understand the key features, design challenges and tradeoffs made by different models of embedded systems and processor architecture, instruction sets and I/O devices related to it.
2. Learn the architecture of AVR microcontrollers and develop embedded systems using it.
3. Demonstrate working knowledge of embedded systems software with Linux and Python 2.7.
4. Complete design of an embedded system with functional requirements for hardware and software components including processor, networking components and sensors, along with applications, subsystem interfaces and middleware.
Module I – [10L]

Introduction to Digital Image Processing & Image Transforms:
Elements of digital image processing systems, Elements of visual perception, digital Image sensing, sampling and quantization, digital image representation, brightness, contrast, hue, saturation, mach band effect, Color image fundamentals -RGB,HSI models. 2D transforms - DFT, DCT, Discrete Sine, Walsh, Hadamard, Slant, Haar, KLT, SVD and Wavelet Transform.

Module II - [10L]

Image Enhancement and Restoration:

Module III - [10L]

Image Compression & Morphological Image Processing:
Need for data compression, Coding redundancy, Interpixel redundancy, Psycho visual redundancy, Image compression models, Error free compression, Huffman coding, Run Length coding, Shift coding, Arithmetic coding, Vector Quantization, Block truncation coding, Lossless predictive coding, Lossy predictive coding, Transform coding, Wavelet coding. Dilation and Erosion, Opening and Closing, Boundary extraction, Region filling, Convex hull, Thinning, Thickening, Skeletons, Pruning.

Module IV - [10L]

Image Segmentation, Representation, Description and Recognition:
Point Detection, Line Detection, Edge Detection, Edge linking and boundary detection. Image segmentation by region growing, region splitting and merging, edge linking. Image Recognition - Patterns and pattern classes, Feature extraction, Matching by minimum distance classifier, Matching by correlation, Cluster analysis, Overview of supervised classifiers like ANN and SVM in Image Processing.

References:

Course Outcomes:
After the completion of the course, the students will be able to:
1. Learn how images are formed, sampled, quantized and represented digitally and processed by discrete, linear, time-invariant systems.
2. Apply transformation algorithms such as DFT, DCT, Discrete Sine, Walsh, Hadamard, Slant, Haar, KLT, SVD and Wavelet transform to any given image.
3. Compress a given image by applying lossy and loss less image coding techniques.
4. Perform image enhancement, restoration, morphological operation and segmentation of a given image.
5. Analyze a given image by extracting features from it and by using object recognition techniques.
Subject Name: INDUSTRIAL AUTOMATION TECHNOLOGY

<table>
<thead>
<tr>
<th>Paper Code: AEIE5232</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Module I – [6L]

Introduction:
Types of industrial processes and their associated control & operational requirements; Necessity and importance of automation in industry; Evolution of industrial automation – conventional and computer control of processes, control systems – elements and architecture.

Module II - [12L]

Programmable Logic Controllers:
Evolution, Function and Architecture; Modules – Types, Wiring and Interfacing; CPU and Memory; PLC Programming.

SCADA:
Elements, Features and Functions; Topology, Architecture and Communication Methods; Industry Specific (Power Transmission & Distribution / Manufacturing / Water & Sewage etc.) Applications.

Module III - [10L]

Distributed Control Systems:
Evolution, Function and Architecture; Elements and Features; System Integration with PLC and 3rd party devices.

General Considerations:
Hierarchical Communication Model – Levels & Network Requirements; Network Access Protocols, Arbitration Methods, Transmission Media and Topology; FieldBus Technology (Profibus, Foundation Fieldbus, etc..); Multi-level Redundancy – Concepts & Implementation.

Module IV - [12L]

Human Machine Interface:
Operator & Engineering Interface – Features, Functions and Requirements.

Trends & Practices:
Computer Integrated Manufacturing/Processing, Management Information Systems; Safety Instrumented Systems (SIS) – Risk analysis and reduction methods, SIF & SIL considerations, IEC 61508 requirements; Wireless Communication – Remote Networks, LAN, HART.

References:
5. Webb & Reis, Programmable Logic Controllers, PHI.
8. Stuart A. Boyer, SCADA-Supervisory Control & Data Acquisition, ISA Publication.

Course Outcomes:
After the completion of the course, the students will be able to:
1. List main types of industrial automation systems and industrial actuation and sensor systems.
2. Build up skills to adopt industrial control components to their automation design
3. Explore the theory of operation of SCADA and its applications
4. Learn about PLC, DCS and how they can be applied in industrial automation.
5. Develop knowledge about human machine interface, trends and practices in industries.
Module I – [10L]

Introduction:

Module II - [8L]

Regression and correlation:

Module III - [14L]

Univariate signal:
Filters, Matched filters; Wiener filters Probabilistic models; Hidden Markov model; Kalman filter.
Multivariate signals:
Multivariate autoregressive model (MVAR); Formulation of MVAR model; Formulation of MVAR model.

Module IV - [8L]

Case study-I: Application to biomedical signals:
Analysis of continuous EEG signals, Single channel analysis; Multiple channel analysis: Mapping; Elimination of artifacts; sleep EEG analysis.
Case study-II: Application to biomedical signals:
Analysis of continuous ECG signals: Measurements, Processing of ECG, Artifact removal, Statistical methods and models for ECG; Heart rate variability: Time-domain methods of HRV analysis; Frequency-domain methods of HRV analysis.

References:
2. A.K. Sharma , Text Book of Biostatistics, DPH Mathematics series, 2005
5. D.C. Reddy, Biomedical Signal Processing: Principles and techniques. TMH, New Delhi, 2005

Course Outcomes:
After the completion of the course, the students will be able to:
1. Calculate statistical measures such as central tendency, dispersion, variance, standard deviation, etc. of a given discrete ECG, EEG, EMG signal
2. Learn regression and correlation models and different random process such as – ARMV Process, AR Process, MA Process, Harmonic Process, etc.
3. Apply matched filter; Wiener and Kalman filter on bio-signals and develop probabilistic models, Hidden Markov models and multivariate autoregressive model (MVAR), etc.
4. Learn practical usage of ECG and EEG signal processing techniques.
Subject Name: EMBEDDED SYSTEMS LAB
Paper Code: AEIE5211

<table>
<thead>
<tr>
<th>Contact hrs per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Introduction to MPLAB® IDE Basics
2. Experiments with GPIO devices:
 b) Output: Light LEDs, Flash LEDs (Delay Loop), Simple Delays Using Timer0, Rotate LEDs.
4. Experiments with Comparator Peripherals
 a) Simple Compare
 b) Using the Comparator Voltage Reference
 c) Higher Resolution Sensor Readings Using a Single Comparator
 d) Generation of PWM.
5. Real time monitoring of voltage and displaying with LCD or seven segment display.
6. Interfacing of real time clock.
7. Program to transmit and receive a message from Microcontroller to PC serially using RS232.
8. Program to get analog input from Temperature sensor and display the temperature value on PC Monitor.

Course Outcomes:
After the completion of the course, the students will be able to:

1. Design and conduct experiments with input and output devices using a microcontroller.
2. Perform programming with timers, interrupts, serial port interfacing of timers and comparators using microcontroller.
3. Interface a sensor with microcontroller and monitor its input by displaying the measured value in LCD or PC.
4. Implement PWM, FIR filter using PIC or ARM microcontrollers.
1. Introduction to LabVIEW tool kit.
2. Simulation and Analysis of various signals using LabVIEW.
3. Real time data acquisition and signal conditioning (amplification, filtration etc.) from various sensors/Transducers using LabVIEW.
4. Time response analysis of a model using LabVIEW.
5. Frequency response analysis of a model using LabVIEW.
6. Root locus and Bode plots based analysis of a given system using LabVIEW.
7. Bio-signal processing using LabVIEW.
8. Study of pressure control using LabVIEW.

Course Outcomes:

After the completion of the course, the students will be able to:

1. Handle the LabVIEW software for signal analysis.
2. Study and analyze time and frequency response of process model.
3. Acquire real time signal for processing and control.
4. Check stability by applying different stability criterion.
The main objective of this course work is to encourage self-learning in the field of student’s own interest among the emerging areas of technology. The student is expected to do an extensive literature survey in his subjects of interest and present seminar on a research problem, available methods in literature, future trends, etc. to a group of experts.

Course Outcomes:

After the completion of the course, the students will be able to:

1. Enhance their presentation and communication skill.
2. Gain information on latest technological developments related to instrumentation, control, communication and other relevant areas related to instrumentation engineering.
3. Carry out literature survey and find out research problems.
Module I: [5L]

Overview of Microsystems Design:
Glimpses of Microsystems; Typical MEMS and Micro-system products, Evaluation of Micro-fabrication, Micro systems and Micro-electronics; The multidisciplinary nature of micro system design and manufacturing; Applications of Microsystems in Automotive, health care, aerospace, telecommunication industries.

Module II: [12L]

Engineering Mechanics for Micro-system Design:
Static bending of thin plates: Bending of circular plates with edge fixed, Bending of rectangular plates with all edge fixed, Bending of square plates with all edge fixed; Mechanical Vibration: General Formulation, resonant Vibration, Micro-accelerometers, Design Theory of accelerometers, Damping coefficient, Resonant Micro-sensors; Thermo Mechanics: Thermal effects on mechanical strength of materials, creep deformation, thermal stresses; Fracture Mechanics: Stress Intensity Factors, Fracture Toughness, Interfacial Fracture Mechanics; Thin Film Mechanics; Overview of Finite Element Method.

Module III: [11 L]

Microfluidic System Design:

Module IV: [12L]

Microsystems Design:

References:

Course Outcomes:
After the completion of the course, the students will be able to:
1. Design MEMS-based diaphragm type devices analytically.
2. Fabricate the whole MEMS system with the help of simulation software.
3. Develop micro-fluidic system for biomedical applications.
4. Develop skill on engineering mechanics for micro-system design.
Subject Name: VLSI TECHNOLOGY

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Module I: [12L]

Digital VLSI Circuits:
MOS Transistor Characteristics, MOS as Digital Switch, NMOS Logic Family, CMOS Logic Family, CMOS Inverter Characteristics (VTC), Inverter Delay & Noise, NAND and NOR gates, Complex Logic Circuits, Logical Effort, Pass Transistor Logic & Transmission Gate, CMOS Sequential Circuits, CMOS D-Latch and D-Flip-Flop, Pseudo NMOS Logic, Dynamic gate, Domino and NORA Logic.

Module II: [8L]

Physical Layout of VLSI Circuits:

Module III: [12L]

VLSI Design Methodology:
Moore’s Law, Scale of Integration (SSI, MSI, LSI, VLSI, ULSI, GSI), Technology growth and process Node, VLSI Design Cycle, Y-Chart, Full Custom Design, Std Cell based Semi Custom Design, Gate Array Design, PLD, FPGA: CLB, LUT, MUX.

Module IV: [8L]

Hardware Description Language:
Introduction to HDL, VHDL/Verilog Modeling: Behavioral, Data-Flow, Structural and Mixed Mode with various examples of combinational and sequential circuits, FSM Example: Mealy Machine and Moore Machine.

References:
4. Angsuman Sarkar, Swapnadip De, Chandan Kumar Sarkar, VLSI Design and EDA TOOLS, SCITECH PUBLICATIONS (India) Pvt. Ltd., 2011

Course Outcome:
After the completion of the course student will be able to
1. Analyze CMOS digital electronics circuits including logic components and their interconnection.
2. Develop models of moderately sized CMOS circuits that realize specified digital functions.
3. Apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect, and to verify the functionality, timing, power, and parasitic effects.
4. Learn VLSI design methodologies - the various steps and tools, the implementation choices, and good architecture practices.
Module I [9L]

Introduction to Robotics, Elements of robots – links, joints, actuators, and sensors:
Introduction – brief history, types, classification and usage, Science and Technology of robots.
Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link representation using D-H parameters, Examples of D-H parameters and link transforms.
Types of transmissions, Purpose of sensors, internal and external sensors, common sensors, encoders, tachometers and strain gauge based force-torque sensors, proximity & distance measuring sensors, vision sensors.

Module II [7L]

Kinematics of serial and parallel robots:
Direct and inverse kinematics problems, Examples of kinematics of Common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tractrix based approach for fixed and free robots and multi-body systems, simulations and experiments, Solution procedures using theory of elimination.
Degrees-of freedom of parallel mechanisms and manipulators, Direct Kinematics problem, Mobility of Parallel manipulators, Inverse kinematics of parallel manipulators and mechanisms.

Module III [10L]

Static and Dynamic analysis of robot manipulators:
Linear and angular velocity of links, Velocity propagation, Manipulator Jacobians for serial and parallel manipulators, Velocity ellipse and ellipsoids, Singularity analysis for serial and parallel manipulators, Loss and gain of degree of freedom, Statics of serial and parallel manipulators, Statics and force transformation matrix of a Gough-Stewart platform, Singularity analysis and statics.
Mass and inertia of links, Lagrangian formulation for equations of motion for serial and parallel manipulators, Generation of symbolic equations of motion using a computer, Simulation (direct and inverse) of dynamic equations of motion, Examples of a planar 2R and four-bar mechanism, Recursive dynamics, Joint and Cartesian space trajectory planning and generation.

Module IV [14L]

Motion planning and control of robots:
Classical control concepts using the example of control of a single link, Independent joint, PID control, Control of a multi-link manipulator, nonlinear model based control schemes,
Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control.

References:

Course Outcomes:

After the completion of the course students will be able to

1. Explain the roles of links, joints & Identify sensors and actuators required in robotic control.
2. Solve direct and inverse kinematics problem of serial and parallel manipulators.
3. Illustrate the degrees of freedom of manipulators.
4. Solve basic robotic dynamics, path planning and control problems.
5. Model robot links and joints and integrate sensor technology and other external devices into the robot system to design multilink flexible robot.
Module I – [8L]

Introduction to Soft Computing:

Stochastic Algorithm:
Biological background, Basics of Stochastic algorithms and its applications.

Module II - [10L]

Fuzzy Logic -I:
Basic concepts of Fuzzy Logic- Probability and possibility theorem, Fuzzy sets and crisp sets, properties of Fuzzy sets, Fuzzy relations, Compositional rule of inference, Fuzzy implications.

Module III-[10L]

Fuzzy Logic-II:
Membership functions, Choice of scaling factors- normalization and de-normalization, Fuzzification procedure, Inference engine- Mamdani and TSK FIS, Choice of defuzzification procedures, Design of Fuzzy controllers, Industrial applications.

Module IV-[12L]

Neural Network-I:
Biological Neural Network, Evolution of Neural Network, Basic models of ANN, Activation functions, McCulloch-Pitts Neural Network model, Single layer and Multi-layer feed forward Neural Network, Hebb Network, Numerical problems.

Neural Network-II:

References:
5. J. Yen and R. Langari, *Fuzzy Logic, Intelligence, Control and Information*, Pearson Education.

Course Outcomes:
After the completion of the course, the students will be able to:

1. Classify the soft-computing into the different computing methods based on their application, knowledge-base, mode of operation, construction, etc.
2. Explain the functions and properties of different fuzzy sets and compare with crisp set, explain different fuzzy relations and implications.
3. Design and analyze the different components of fuzzy controller appropriately to obtain the best possible fuzzy controller that can be applied to any process control systems.
4. Identify different component of biological and artificial neural network, and acquire knowledge of different ANN terminologies to apply in solving simple ANN problems.
5. Analyze and design algorithms for different supervised and unsupervised learning networks.
6. Illustrate biological background and give idea about basics of stochastic algorithm.
Module I - [8L]

Introduction & Architecture:
Brief historical survey of sensor networks, WSN types and Architecture: Single-node architecture - hardware components, design constraints, energy consumption of sensor nodes, operating systems and execution environments, types of sources and sinks – single hop vs. multi hop networks, multiple sources and sinks – mobility, optimization goals and figures of merit, gateway concepts, design principles for WSNs, service interfaces for WSNs. Introduction to MANETs (Mobile Ad-hoc Networks), Comparative study of WSNs with MANETs.

Module II – [12L]

Communication Protocols:
Introduction, Background, Fundamentals of MAC Protocols, MAC Protocols for WSNs: low duty cycle protocols and wakeup concepts, Contention-based protocols, Schedule-based protocols, Traffic-adaptive medium access protocol (TRAMA), WSN Standards: IEEE 802.15.4, Zigbee; Address and name management, assignment of MAC addresses; Routing challenges and design issues in Wireless Sensor Networks, Flooding and Gossiping, Data centric routing (SPIN), Directed Diffusion, Energy efficient routing, Gradient-based routing, Hierarchical routing (LEACH), Location based routing, Real time routing; Data aggregation - data aggregation operations, aggregate queries & techniques.

Module III – [8L]

Topology and Synchronization:
Topology control, flat network topologies, hierarchical networks by clustering, time synchronization, properties, protocols based on sender-receiver and receiver-receiver synchronization, LTS, TPSN, RBS, HRTS, localization and positioning, properties and approaches, single-hop localization, positioning in multi-hop environment, range based localization algorithms – location services, sensor tasking and control.

Module IV – [12L]

Network Platforms:

References:
Course Outcomes:

After completing the course, the students will be able to:

1. Familiar with common wireless sensor node architecture.
2. Acquire knowledge of MAC protocols developed for WSN.
3. Carry out simple analysis and planning of WSN.
4. Apply routing protocols on the developed WSN.
5. Work on some WSN standards, platforms and tools.
Module I – [8L]

Remote Sensing Foundations:

Module II - [12L]

Image Acquisition and Photogrammetry:
Aerial Photography- Vertical and Oblique Aerial Photography; Aerial Cameras- Focal plane and Focal length, f/stop ratio, Shutter Speed; Types of Aerial Cameras, Flight lines of Vertical Aerial Photography, Flight planning; Thermal Infrared Remote Sensing- Thermal Properties of Terrain, Thermal Infrared Data Collection and its Geometric Correction; Active Microwave Imagery System- Components, wavelength, Frequency and Pulse Length, Azimuth and Range Direction, Depression Angle, Incident angle and Polarization, Slant-Range versus Ground-Range RADAR image geometry- Computation of Range and Azimuth Resolution, Radar Equation, Synthetic Aperture Radar System; Light Detection and Ranging (LIDAR)- LIDAR Imaging, Types of Imaging LIDAR, Accuracy of LIDAR Measurements; Photogrammetry- Scale and Height measurement on single Vertical Aerial Photograph- Over Level Terrain and Variable Terrain, Stereoscopic Measurement of Object Height or Terrain Elevation, Area Measurement of well known Geometric Shapes and Irregularly Shaped Polygons.

Module III-[10L]

Essential Image Processing for Remote Sensing:

Module IV-[10L]

Remote Sensing Data Classification and Analysis:
Remote Sensing-Feature Extraction and Selection, Classification, Clustering; Unsupervised classification (iterative clustering)- Iterative clustering algorithms, Feature space iterative clustering, Seed selection, Cluster splitting along PC1; Supervised classification- Bayesian classification strategy, Neural Networks, Support Vector Machines (SVM), Decision rules: dissimilarity functions, Box classifier, Euclidean distance: simplified maximum likelihood, Maximum likelihood; Post-classification processing- smoothing and accuracy assessment, Class smoothing process, Classification accuracy assessment.

References:

Course Outcomes:
After the completion of the course, the students will be able to:
1. Explain how remotely sensed images are acquired from satellites and aircraft.
2. Interpret the cause of different spectral responses and the significance of spectral signatures in optical, thermal infrared and microwave remote sensing.
3. Develop skills to address an environmental monitoring problem by selecting an appropriate remotely sensed data set and applying the relevant image analysis and interpretation techniques.
4. Perform basic remote sensing image interpretation including spectral ratios, histogram stretching, filtering, supervised and unsupervised classification algorithms.
Module I – [08L]

Transduction Principles:
Resistive Transducers; Strain gauge type blood pressure transducers, Thermo resistive transducer, Capacitive Transducer, Piezoelectric Transducer; Flow transducers, measurement errors; definitions: accuracy, precision, sensitivity, resolution, threshold.

Module II - [12L]

Bio-potentials and electrodes:
Origin of Bio-potentials- structure , types and electrical activity of Cells, Resting and action potentials of cells , Different models, Electrodes-surface, needle and micro electrodes and their electrical models; half cell potential, Electrode-Electrolyte interface, Off-set potentials , Polarization- polarizable and non-polarizable electrodes, Ag/AgCl electrodes, motion artifact.

Module III-[12L]

Biomedical signal processing:

Module IV-[8L]

Electrical safety:

References:

Course Outcomes:
After the completion of the course, the students will be able to:
1. Explain the fundamental principles and applications of different transducers used for body parameter measurements.
2. Understand the physiology of biomedical systems and different methods in the design of biomedical instruments.
3. Learn the different methods of medical imaging systems, concepts related to the operations and analysis of biomedical instruments.
4. Aware of the importance of electrical safety and apply it in the design of different assisting therapeutic and diagnostic medical devices.
Module I – [10L]
Review of Z- transform, inverse Z-transform, Mapping from s-plane to Z-plane, Initial value theorem, final value theorem etc. Discrete-time Systems: Sampled signals, Sampling frequency consideration and selection of optimum sampling period, quantization effects, the zero and first order holds, linear difference equations and discrete transfer functions, block diagrams, stability analysis techniques- Jury’s stability test, bi-linear transformation, Computer Oriented Mathematical Models: Mathematical representation of sampling process, Pulse transfer function and data holds, Development of pulse transfer function of various block configurations.

Module II - [10L]

Module III-[10L]
Tools for designing: root locus method, frequency response based designs, introduction to direct design methods, State variable model, canonical forms, characteristic equation, solution to discrete state equation, controllability and observability of discrete state space models.

Module IV-[10L]
Adaptive Control and Self Tuning: Gain scheduling, Model reference adaptive control, Self-tuning regulators, Cascade control, Feedforward control – Introduction and design fundamentals, and applications.

References:

Course Outcomes:
After the completion of the course, the students will be able to:
1. Understand Transformation technique from continuous to discrete domain.
2. Realize the fundamental principles for design of Digital Control system and will gain knowledge of implementing for industrial applications.
3. Developing algorithms for applications based various digital controllers and analysis of discrete control systems using various time and frequency domain tools.
4. Aware of advanced understanding of adaptive and self tuning principles and applications.
Module I – [13L]

Linear versus Nonlinear Control System:
Introduction to nonlinear control, Examples of nonlinear models and nonlinear phenomena: Pendulum equation, Mass-spring system, Negative-resistance oscillator, Common nonlinearities.

Second Order Systems:
Qualitative behavior of linear systems, Phase plane method, Multiple equilibria, Qualitative behavior near equilibrium points, Limit Cycles, Numerical construction of phase portraits, Existence of periodic orbits, Bifurcation.

Module II-[10L]

Describing Function and Stability Analysis:
Describing function method- Calculation of Describing function for different non-linearities, Stability analysis using Describing function and Nyquist criterion- Concept of Limit Cycle.

Module III-[10L]

Nonlinear Stability:
Lyapunov stability, Autonomous systems, Invariance principle, Linear systems and linearization, Comparison functions, Nonautonomous systems, Linear time-varying systems and linearization, Converse theorems, Boundedness and ultimate boundedness, Input-to-state stability.

Module IV-[7L]

Feedback Linearization:
Feedback control, Control problems, Stabilization via linearization, Integral control, Integral control via linearization, Gain scheduling, Feedback linearization, Input-output linearization, Full-state linearization, State feedback control, Stabilization.

References:

Course Outcomes:
After the completion of the course, the students will be able to:
1. Identify linear and nonlinear systems from mathematical model, and acquire knowledge of different nonlinear systems and their models.
2. Explain some of the basic ideas of nonlinear systems and look at the behavior of a nonlinear system near equilibrium points, the phenomenon of nonlinear oscillation, and bifurcation.
5. Give idea about feedback control explain model uncertainties and linearization techniques.

6. Employ the most appropriate tools to solve the complexity of nonlinear feedback control challenges and come up with systematic design procedure to meet the control objectives and design specifications.
Dissertation should be on any topic having relevance with Instrumentation, Electrical or inter-disciplinary field of engineering. The same should be decided by the student and concerned supervisor. Dissertation should consist of research work done by the student in the selected topic with comprehensive and significant review of recent developments in the same field.

Dissertation Part- I shall consist of the following division(s) whichever applicable:
1. Introduction
2. Goal of the work
3. Extensive literature survey
4. Data collection from experimental set-ups, websites, R&D organizations, industries, etc.
5. Study of the viability, applicability and scope of the dissertation
6. Detailed design (hardware or software as applicable)
7. Partial implementation with results
8. Future work

A candidate should prepare the following documents for examination:
1. A detailed report in the prescribed format based on the work related to dissertation.
2. Every candidate should present himself (for about 20-30 min.) for evaluation before the panel of examiners consisting of Head of Department, M. Tech. Coordinator, Supervisors and examiners from outside of the department.

Course Outcomes:

After the completion of the course, the students will be able to:
1. Improve in skills to apply knowledge of sensor selection, circuit design, signal processing, conduct experiments, analyze and interpret data.
2. Implement existing or new technology for a proposed project work by applying programming and computing skills using technical software like MATLAB, LAB VIEW, etc.
3. Identify, formulate an engineering problem and implement through a scientific manner.
4. Develop ethical and social responsibilities by finding and implementing the needs of society for betterment of life and engage themselves in life-long learning.
The student has to continue the thesis work done in third semester. At the end of fourth semester the student will appear in examination (viva-voce) before the panel of examiners to defense his/her work done in dissertation.

Course Outcomes:

After the completion of the course, the students will be able to:

1. Represent and communicate a project work very efficiently to the audience.
2. Interpret experimental data and note down observations competently.
3. Respond to all types of questions from audience based on their presentation topic.
The Dissertation (Completion) is an extension of Dissertation Part - I. It shall be assessed internally by a panel of examiners (similar to the one formed in dissertation part- I) before submission to the Institute. The candidate shall submit the dissertation in triplicate in the prescribed format to the Head of the department/ M. Tech coordinator, duly certified that the work has been satisfactorily completed.

Course Outcomes:

After the completion of the course, the students will be able to:

1. Manifest themselves in industrial and research ambiences by growing skills and confidence.
2. Solve, analyze and execute technical projects in specified time frame.
3. Develop ethical and social responsibilities by fulfilling the needs of society for betterment of life and engage themselves in life-long learning.
Every student should appear before a panel duly constituted by the members of internal faculties of the department in order to evaluate his/her knowledge in various subjects learned during the two years of study of the M. Tech AEIE course.

Course Outcomes:

After the completion of the course, the students will be able to:

1. Appear interview elegantly and confidently.
2. Judge themselves about their domain knowledge.
3. Develop habits of learning.