Computer Science and Engineering
M. Tech Course
July, 2018

(Last updated: June 2019)
PART I: COURSE STRUCTURE
First Year
Semester I

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>CSEN5101</td>
<td>Advanced Data Structures</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CSEN5102</td>
<td>Research Methodology and IPR</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>MATH5101</td>
<td>Advanced Discrete Mathematics and Statistical Methods</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CSEN5131 – CSEN5140</td>
<td>Professional Elective I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CSEN5131</td>
<td>Machine Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN5132</td>
<td>Advanced Wireless and Mobile Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN5133</td>
<td>Introduction to Intelligent Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN5134</td>
<td>GPU Computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN5135</td>
<td>Image Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CSEN5141 – CSEN5150</td>
<td>Professional Elective II</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CSEN5141</td>
<td>Data Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN5142</td>
<td>Distributed Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN5143</td>
<td>Wireless Sensor Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN5144</td>
<td>Digital Forensics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN5145</td>
<td>Computational Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Audit Course</td>
<td>Disaster Management</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DIMA5116</td>
<td>Constitution of India</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INCO5117</td>
<td>Personality Development through Life Enlightenment Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDSL5118</td>
<td>Stress Management by Yoga</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YOGA5119</td>
<td>Sanskrit for Technical Knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SANS5120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Theory

| | 16 | 0 | 0 | 16 | 14 |

Practical

| | 0 | 0 | 8 | 8 | 4 |

Total Semester

<p>| | 16 | 0 | 8 | 24 | 18 |</p>
<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>CSEN5201</td>
<td>Advanced Algorithms</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CSEN5202</td>
<td>Soft Computing</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>CSEN5231 – CSEN5240</td>
<td>Professional Elective III</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSEN5231 – CSEN5240 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Preprocessing and Analysis</td>
<td>CSEN5231 – CSEN5240 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Secure Software Design and Enterprise Computing</td>
<td>CSEN5232 – CSEN5233 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Vision</td>
<td>CSEN5233 – CSEN5234 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory of Computation</td>
<td>CSEN5235 – CSEN5233 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computational Geometry</td>
<td>CSEN5233 – CSEN5234 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CSEN5241 – CSEN5250</td>
<td>Professional Elective IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSEN5241 – CSEN5250 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human and Computer Interaction</td>
<td>CSEN5242 – CSEN5243 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graph Algorithms</td>
<td>CSEN5242 – CSEN5243 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cloud Computing</td>
<td>CSEN5242 – CSEN5243 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Algorithms for VLSI CAD</td>
<td>CSEN5244 – CSEN5244 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spatial Informatics and GIS</td>
<td>CSEN5244 – CSEN5245 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CSEN5231 – CSEN5250</td>
<td>Audit Course – any one subject from Elective III or</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elective IV bucket</td>
<td>CSEN5231 – CSEN5250 –</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Theory 15 0 0 15 12

Practical

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>CSEN5251</td>
<td>Advanced Algorithms Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CSEN5252</td>
<td>Soft Computing Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Practical 0 0 8 8 4

C. Sessional

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSEN5293</td>
<td>Term Paper and Seminar</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Semester 15 0 12 27 18
Second Year
Semester III

A. Theory

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>CSEN6131 - CSEN6139</td>
<td>Professional Elective V</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CSEN6131</td>
<td>Mobile Applications and Services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN6132</td>
<td>Compiler for HPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN6133</td>
<td>Computational Complexity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN6134</td>
<td>Fault Tolerant Computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN6135</td>
<td>Approximation Algorithms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN6136</td>
<td>Randomized Algorithms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN6137</td>
<td>Information Retrieval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN6138</td>
<td>Social Network Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSEN6139</td>
<td>Quantum Computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Open Elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CSEN6121</td>
<td>Business Analytics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECN6122</td>
<td>Design of Embedded Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFO6123</td>
<td>Information Theory and Coding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECN6124</td>
<td>Automation in VLSI Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH6121</td>
<td>Optimization Techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEIE6122</td>
<td>Intelligent Control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Theory
6 | 0 | 0 | 6 | 6

B. Sessional

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>CSEN6195</td>
<td>Dissertation – Phase I</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester
6 | 0 | 20 | 26 | 16

Second Year
Semester IV

A. Sessional

<table>
<thead>
<tr>
<th>Sl.</th>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>CSEN6295</td>
<td>Dissertation – Phase II</td>
<td>0</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>CSEN6297</td>
<td>Comprehensive Viva-voce</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester
0 | 0 | 28 | 28 | 16
PART II: DETAILED SYLLABUS
M. Tech. Detailed Syllabus - Semester I

Course Name: Advanced Data Structure
Course Code: CSEN5101

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
On completion of the course the students undergoing this course are able to:
1. Remember definitions and notations of basic terminologies used in data structures.
2. Learn and understand abstract data types and its significance; differentiate between linear and non-linear data structures for solving real world problems.
3. Understand and apply some of the special trees, Tries data structure and various Hashing Techniques
4. Design modular algorithms on linear and non-linear data structures for solving engineering problems efficiently.
5. Understand and analyze the basic principles of different string matching algorithms and identify their advantages and disadvantages.
6. Evaluate the performance of different data structures with respect to various applications.

Module I: Review of Fundamental Concepts (9L)
- **Introduction:** Arrays, lists, stacks, queues, heaps, priority queues, Dictionary operations, Abstract Data Types (ADTs).
- **Hashing:** Hash tables, hash functions, collision resolution by chaining, Collision resolution by open addressing, linear and quadratic probing, Double hashing, extensions and recent advances.

Module II: Binary Trees (9L)
- **Basic Features and Procedures:** Binary tree traversal methods, total path length in binary trees, Binary search trees, insertion and deletion of keys, Worst-case and average case times for search, insertion and deletion.

Module III: Other Data Structures for Storage and Search (9L)
- **B-Trees:** Broad shallow tree structures for secondary storage, Insertion and deletion of keys in B-trees, insertion and search times.
- **Skip Lists:** Need for randomized methods, search and insertion in skip lists, Probabilistic analysis, deterministic skip lists.
- **Special Types of Binary Trees:** AVL trees, Red-Black trees, 2-3 trees, other types.

Module IV: Additional Topics (9L)
- **Computational Geometry:** Introductory concepts, one and two dimensional range searching Priority search trees, priority range trees, quadtrees, k-D trees.
- **Pattern Matching in Strings:** Brute force methods, Boyer-Moore algorithm, Knuth-Morris-Pratt algorithm, Tries, Huffman codes, extensions.

References:
2. D E Knuth, The Art of Computer Programming (latest editions), Volume 1 (Fundamental Algorithms) and Volume 3 (Sorting and Searching), Addison Wesley.
Course Name: Research Methodology and IPR
Course Code: CSEN5102

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Outcomes:
On completion of the course the students undergoing this course are able to:
1. Understand some basic concepts of research and its methodologies
2. Identify appropriate research topics
3. Select and define appropriate research problem and parameters
4. Prepare a project proposal (to undertake a project)
5. Organize and conduct research (advanced project) in a more appropriate manner
6. Write a research report and thesis

Module 1: Introduction:

Module 2:
Part I: Literature Survey and Problem Formulation:
(Discuss in class Web Search: Introduction to Internet. Use of Internet and www. Using of search engines and advanced search tools.)
Part II: Data Collection and Simulation

Module 3: Data Analysis
Analysis tools: Review of Basic Statistical Measures (mean, median, mode, quartile, percentile, variance, covariance, correlation, regression), Probability Distributions (Binomial, Poisson, Uniform, Exponential, Normal), Central Limit Theorem, ANOVA, Latin Square Design, Sampling (Chi-square Distribution, F- Distribution), Test of Hypothesis.

Module 4: Reporting
Presentation tool: Introduction to presentation tool, features and functions, creating presentations, customising presentation. [Tools used: Microsoft PowerPoint, Open Office or any other tool]
Spreadsheet tool: Introduction to spread-sheet applications, features and functions, using formulae and functions, data storing, features for statistical data analysis, generating charts/graphs and other features. Functions and Macro [Tools: Microsoft Excel, Open office and similar or other advanced tools]
Patent writing, Patent filing, IPR

References:
Course Name : Advanced Discrete Mathematics and Statistical Methods
Course Code: MATH510

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
After completing the course the student will be able to:
1. Describe the way of writing mathematical model for real-world optimization problems.
2. Identify Linear Programming Problems and their solution techniques.
3. Categorize Transportation and Assignment problems.
4. Apply the way in which Game Theoretic Models can be useful to a variety of real-world scenarios in economics and in other areas.
5. Convert practical situations into non-linear programming problems.
6. Solve unconstrained and constrained programming problems using analytical techniques.

MODULE I : Probability and Statistics I (9L)
- Review of Basic Probability: Sample Space, Events, Classical Definition, Addition and Multiplication Rule, Conditional Probability
- Axiomatic definition of Probability and related problems
- Bayes’ Theorem and related problems
- Expectation and Variance
- General properties of probability distributions

MODULE II : Probability and Statistics II (9L)
- Moment generating and Characteristic functions
- Special Distributions: Binomial and Normal Distribution
- Measures of Central Tendency: Mean, Median, Mode
- Measures of Dispersion: Standard deviation and Variance
- Relation between random variables, Covariance and Correlation Coefficient
- Linear Regression equations

MODULE-III: Topics in Combinatorial Mathematics (9L)
- Pigeon Hole Principle
- Permutations and Combinations
- Binomial Coefficients
- Recurrence Relations and Generating Functions
- Properties of Fibonacci Numbers
- Principle of Inclusion and Exclusion
- Polya’s Theory of Counting, Ramsey’s Theorem

MODULE IV: Advanced Graph Theory (9L)
- Tree, Binary Tree, Spanning Tree
- Walk, Path, Cycle, Hamiltonian Graph
- The Travelling Salesman Problem
- Euler Graph, The Chinese Postman Problem, Planar Graph
- Euler’s Formula for Planar Graph and Related Problems
- Examples of Non-Planar Graphs, Kuratowski’s Theorem
- Matching and Augmenting Paths, Hall’s Marriage Theorem and Related Problems
- Vertex Colouring, Chromatic Polynomials

References:
2. Introduction to Graph Theory, D G West, Prentice-Hall of India
4. Introduction to Probability and Statistics for Engineers and Scientists, S. Ross, Elsevier
5. Fundamentals of Mathematical Statistics, S.C Gupta and V.K.Kapoor, Sultan Chand and Sons
Course Name: Machine Learning
Course Code: CSEN5131

Course Outcomes:
On completion of the course the student should be able to:
1. Learn and understand various machine learning algorithms;
2. Understand complexity of Machine Learning algorithms and their limitations;
3. Compare and contrast various machine learning techniques and to get an insight of when to apply a particular machine learning approach;
4. Mathematically analyze various machine learning approaches and paradigms;
5. Apply common Machine Learning algorithms in practice and implementing their own;
6. Perform experiments in Machine Learning using real-world data

Module 1: Supervised Learning (Regression/Classification) (9L)
- Basic methods: Distance-based methods, Nearest-Neighbors, Decision Trees, Naive Bayes
- Linear models: Linear Regression, Logistic Regression, Generalized Linear Models
- Artificial Neural Networks: Neural Network Model, Backpropagation algorithm; Introduction to Radial Basis Function, Recurrent Neural Network, Convolution Neural Network
- Beyond Binary Classification: Multi-class/Structured Outputs, Ranking

Module 2: Unsupervised Learning (9L)
- Clustering: K-means/Kernel K-means, DBScan
- Dimensionality Reduction: PCA and kernel PCA
- Matrix Factorization and Matrix Completion

Module 3: (9L)
- Components of learning; Error and Noise; Training vs Testing: From Training to Testing,
- Dichotomies, Growth Function, Break Points, VC Dimension
- Bias-Variance Tradeoff: Bias and Variance, Learning Curves

Module 4: (9L)
- Support Vector Machines, Nonlinearity and Kernel Methods
- Overfitting: What is overfitting? Dealing with overfitting
- Regularization: informal and formal, Weight decay, Choosing a regularizer
- Deep Learning

References:
2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009 (freely available online)
Course Name: Advanced Wireless and Mobile Networks

Course Code: CSEN5132

Contact Hours Per Week

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
On completion of the course the student should be able to:
1. Learn the wireless/mobile market and the future needs and challenges.
2. Understand the state-of-the-art in network protocols, architectures and applications.
3. Understand the foundation of understanding and working for future generation of wireless systems.
4. Understand the concept of Continuous Time Markov Chain (CTMC).
5. Learn to analyze the quality of a network.
6. Acquire the ability to design new protocols for wireless networks and analyse them.

MODULE 1 (9L)
- INTRODUCTION: Wireless Networking Trends, Key Wireless Physical Layer Concepts, Multiple Access Technologies - CDMA, FDMA, TDMA, Spread Spectrum technologies,
- Frequency reuse, Challenges in Mobile Computing: Resource poorness, Bandwidth, energy etc.
- RADIO PROPAGATION AND MODELLING: Modeling of radio propagation channels including path-loss models, Lognormal shadowing, fading and multipath.
- TOOLS TO EVALUATE NETWORK PERFORMANCE: Introduction to Markov Chain, Channel assignment strategies, evaluation of channel assignment strategies using Continuous Time Markov Chain.

MODULE 2 (9L)
- ADVANCED WIRELESS CELLULAR NETWORKS: OFDM, 4G networks, WiMAX (Physical layer, Media access control, Mobility and Networking), LTE
- 5G networks: Network Densification, Millimetre Wave, MIMO
- Convex Optimization and its Application in 5G networks

MODULE 3 (9L)
- NETWORK AND TRANSPORT LAYER PROTOCOLS: Mobile IPv4, Mobile IPv6 and TCP over Wireless Networks: ATCP, ITCP, MTCP and others.
- WLAN: IEEE 802.11 Wireless LANs Physical and MAC layer, 802.11 MAC Modes (DCF and PCF) IEEE 802.11 standards, Architecture and protocols, Infrastructure vs. Adhoc Mode, Hidden Node and Exposed Terminal Problem, Problems, Fading Effects in Indoor and outdoor WLANs, WLAN Deployment issues.

MODULE 4 (9L)
- WIRELESS ADHOC NETWORK: Definition, Properties, Limitations, Routing Protocols: DSR, DSDV, AODV, TORA, etc. Introduction to Vehicular Adhoc Networks.
- WIRELESS PANs: Bluetooth and Zigbee.

References:
Course Name: Introduction to Intelligent Systems
Course Code: CSEN5133

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
On completion of the course the student should be able to:
1. Understand the basic features / attributes that an intelligent system should have and how those attributes can be incorporated to the system.
2. Comprehend the importance of knowledge as far as intelligence is concerned.
3. Apply this knowledge so that it can be used to infer new knowledge.
4. Apply various searching algorithms as and when required
5. Understand the basic principles of various learning algorithms
6. Design and evaluate the performance of various heuristics in different application domain

Module I: [9L]
- Introduction [1L] – Definition of AI, Intelligent Behavior Turing Test, Typical AI Problems, Various AI Approaches, Limits of AI.
- Introduction to Intelligent Agents [1L] - Agents and environment, Agent Architecture, Agent Performance, Rational Agent, Nature of Environment, Simple Reflex Agent, Goal Based Agent, Utility Based Agent.

Module II: [9L]
- Constraint Satisfaction Problem [2L] - Definition of CSP, Representation of CSP, Formulation of Various popular problems as CSP, constraint graphs, Solution methods of CSP – Backtracking and Forward Checking, variable and value ordering heuristic, degree heuristic, least-constraining value heuristic, constraint propagation, dependency-directed backtracking

Module III: [9L]

Module IV: [9L]
- Planning [2L] - Introduction, Simple planning agent, Problem solving vs. planning, Logic based planning, Goal Stack planning, Planning as a search, Total-order vs. partial order planning.
• Natural Language Processing [1L] - Introduction. Brief idea about Syntactic processing, semantic analysis, discourse and pragmatic processing.
• Expert Systems [1L] - Representing and using domain knowledge, expert system shells, knowledge acquisition.

References:
1. Artificial Intelligence A Modern Approach, Stuart Russell and Peter Norvig, Pearson Education
2. Artificial Intelligence, Ritch and Knight, TMH
3. Artificial Intelligence and Intelligent Systems, N.P.Padhy, Oxford University Press
4. Introduction to Artificial Intelligence and Expert Systems, Dan W. Patterson, PHI
5. PROLOG Programming for Artificial Intelligence, Ivan Bratko, Pearson India.
Course Name: GPU Computing
Course Code: CSEN5134

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
By attending the course, students would:
1. Understand GPU architectures to recognize its potential use as a general purpose computing unit.
3. Conceptualize and apply concurrent data structures to design and analyze efficient parallel algorithms for GPUs by amplifying the utilization of constrained warps, thread blocks, SMP registers, etc.
4. Understand different approaches to handle memory and synchronization issues under parallelism in a GPU framework.
5. Conceptualize the Event-based Synchronization techniques, used in kernel executions to manage overlapping of data transfers.
6. Understand the application of GPU computing in different graph algorithms and deep learning techniques.

Module 1: Introduction (9L)
- A short history of supercomputing;
- GPU Introduction; CPU/GPU comparison; GPU Architecture;
- CUDA Introduction: Hardware overview; OpenCL / OpenACC introduction;

Module 2: CUDA/GPU Programming (8L)
- Grids/Blocks and Threads: Kernels Functions; Thread organization and hierarchy; Warps/ Wavefronts, Thread blocks / Workgroups.
- Memory handling: global, local / shared, private, textures, Constant Memory; Strategy for reducing Global Memory Traffic; Memory and Parallelism;

Module 3: Performance Considerations (10L)
- Streaming multiprocessors; 1D / 2D / 3D thread mapping; Dynamic Partitioning of Streaming Multiprocessors; Data Prefetching;
- Synchronization: Memory Consistency, Barriers (local versus global), Atomics, Memory fence. Prefix sum, Reduction. Programs for concurrent Data Structures such as Worklists, Linked-lists. Synchronization across CPU and GPU.

Module 4: Advanced Topics (9L)
- Case Studies: Graph algorithms, Deep Learning
- Streams: Asynchronous processing, tasks, Task-dependence, Overlapped data transfers, Default Stream, Synchronization with streams. Events, Event-based Synchronization - Overlapping data transfer and kernel execution.

Suggested Additional Topics:
- Designing GPU based systems.
- Floating Point considerations in GPU
- Advanced topics: Dynamic parallelism, Unified Virtual Memory, Multi-GPU processing, Peer access, Heterogeneous processing
- Debugging GPU Programs. Profiling.

References:
1. Programming Massively Parallel Processors: A Hands-on Approach; David Kirk, Wen-mei Hwu; Morgan Kaufman;
2. CUDA Programming: A Developer's Guide to Parallel Computing with GPUs; Shane Cook; Morgan Kaufman;
3. GPU Computing and Applications: Yiyu Cai, Simon See; Springer;
Course Name: Image Processing
Course Code: CSEN5135

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
On completion of the course the student should be able to:
1. Get detail exposure to and understanding of various applications of image processing in industry, medicine, and defense.
2. Learn the digital processing algorithms and techniques in image enhancement and image restoration.
3. Able to understand various algorithms used in image compression, segmentation and morphology.
4. Acquire an appreciation for the image processing issues and techniques
5. Apply several image processing techniques in solving real world problems.
6. Conduct independent study and analysis of image processing problems and techniques.

Module I (9L) Fundamentals of Image Processing:
- Image Acquisition, Image Model, Sampling, Quantization, Relationship between pixels, distance measures, connectivity, Image Geometry, Photographic film.
- Histogram: Definition, decision of contrast basing on histogram, operations basing on histograms like image stretching, image sliding, Image classification. Definition and Algorithm of Histogram equalization.

Image Transforms:
- A detail discussion on Fourier Transform, Wavelet transform, DFT, FFT, properties. A brief discussion on WALSH transform, WFT, HADAMARD transform, DCT.

Module II (9L) Image Enhancement: (by SPATIAL Domain Methods):
- Arithmetic and logical operations, pixel or point operations, size operations, Smoothing filters – Mean, Median, Mode filters – Comparative study, Edge enhancement filters – Directional filters, Sobel, Laplacian, Robert, KIRSCH, Homogeneity and DIFF Filters, prewitt filter, Contrast Based edge enhancement techniques. Low Pass filters, High Pass filters, sharpening filters.
- Image enhancement (by FREQUENCY Domain Methods)

Module III (9L) Image compression
- Definition, A brief discussion on – Run length encoding, contour coding, Huffman code, compression due to change in domain, compression due to quantization, Compression at the time of image transmission. Brief discussion on:- Image Compression standards.

Module IV (9L) Image Segmentation:
- Definition, characteristics of segmentation. Detection of Discontinuities, Thresholding Pixel based segmentation method. Region based segmentation methods – segmentation by pixel aggregation, segmentation by sub region aggregation, histogram based segmentation, split and merge technique. Use of motion in segmentation (spatial domain technique only).
- Morphology:
 - Dilation, Erosion, Opening, closing, Hit-and-Miss transform, Boundary extraction, Region filling, connected components, thinning, Thickening, skeletons, Pruning Extensions to Gray – Scale Images, Application of Morphology in image processing.

Text Books:

References:
<table>
<thead>
<tr>
<th>CSEN5131 – CSEN5140</th>
<th>Professional Elective II</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSEN5141</td>
<td>Data Science</td>
</tr>
<tr>
<td>CSEN5142</td>
<td>Distributed Systems</td>
</tr>
<tr>
<td>CSEN5143</td>
<td>Wireless Sensor Networks</td>
</tr>
<tr>
<td>CSEN5144</td>
<td>Digital Forensics</td>
</tr>
<tr>
<td>CSEN5145</td>
<td>Computational Biology</td>
</tr>
</tbody>
</table>

Course Name: Data Science
Course Code: CSEN5141

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
On completion of the course the student should be able to:
1. Explain how data is collected, managed and stored for data science;
2. Understand the key concepts in data science, including their real-world applications and some of the popular techniques used by data scientists;
3. Build skills in data management;
4. Demonstrate proficiency with statistical analysis of data;
5. Develop ability to build and assess data-based models;
6. Apply data science concepts and methods to solve real-world problems;

Module 1: Data Science Process (9L)
- Overview – Benefits and Uses, Facets of Data, Big Data Ecosystem;
- Data Scientist’s Role in Major Steps – Goal Setting, Data Retrieval, Data Preparation, Data Exploration, Data Modeling, Data Presentation;

Module 2: Statistics for Data Science (9L)
- Exploratory Data Analysis (EDA) – Structured Data, Rectangular Data, Location, Variability, Data Distribution, Binary and Categorical Data, Correlation, Multiple Variables;
- Sampling Distributions – Random Sampling, Bias, Sampling Distribution and Central Limit Theorem (CLT), Bootstrap, Confidence Interval; Different Distributions – Binomial / Poisson / Exponential / Normal / Student’s t / Long-Tailed;

Module 3: Algorithms for Data Science (9L)
- Regression – Simple Linear, Multiple Linear, Polynomial; Prediction using Regression (Logistics Regression); [Non-linear Regression to be covered in detail in ML]
- Classification – K Nearest Neighbors (k-NN), Naive Bayes Classification; Evaluating Classification Models – Accuracy, Precision, Recall, Specificity, Receiver / Operating Characteristics (ROC / OCC) Curve and Area Under Curve (AUC), Precision-Recall (PR) Curve;
- Unsupervised Learning – K-Means Clustering, Hierarchical Clustering and Dendrogram, Principal Component Analysis (PCA); [PCA to be covered in detail in ML]

Module 4: Data Visualization (9L)
- Visual Analytics -- Definition, Roles and Lifecycle / Process / Workflow of Visualization, Common Display Types with Examples;

References:
1. “Introducing Data Science”; Davy Cielen, Arno D Meysman and Mohamed Ali; Dreamtech Press
2. “Practical Statistics for Data Scientists”; Peter Bruce and Andrew Bruce; O’Reilly Media Inc.
3. “Doing Data Science”; Cathy O’Neil and Rachel Schutt; O’Reilly Media Inc.
5. “Mining of Massive Datasets” v2.1; Jure Leskovec, Anand Rajaraman and Jeffrey Ullman; Cambridge University Press
Course Name: Distributed Systems

Course Code: CSEN5142

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
Upon successful completion of this course students should be able to:
1. Identify the introductory distributed database concepts and its structures, and relate the importance and application of emerging database technology
2. Describe terms related to distributed object database design and management.
3. Produce the transaction management and query processing techniques in DDBMS.
4. Demonstrate knowledge of the basic elements and concepts related to distributed system technologies
5. Demonstrate knowledge of the core architectural aspects of distributed systems and underlying components of distributed systems (such as RPC, file systems)
6. Design and implement distributed applications and demonstrate experience in building large-scale distributed applications
7. Use and apply important methods in distributed systems to support scalability and fault tolerance

Module 1:
- Distributed Systems [4L] - Introduction to distributed computing systems. DCS design goals, Transparencies, Fundamental issues
- Distributed Coordination [5L] - Temporal ordering of events, Lamport's logical clocks, Vector clocks; Ordering of messages, Physical clocks, Global state detection

Module 2:
- Process synchronization [5L] - Distributed mutual exclusion algorithms
- Inter-process communication [5L] - Message passing communication, Remote procedure call, Transaction communication, Group communication; Broadcast atomic protocols.

Module 3:
- Distributed Scheduling [5L] - Issues in Load Distributing, Classification of Load Distributing algorithm, Load Balancing vs Load Sharing, Preemptive vs Non-Preemptive transfers

Module 4:

Book:
Text Books:
1. Ceri and Pellagetti: Distributed Database: Principles and Systems, TMH

Reference:
1. Silberschatz Korth, Sudarshan: Database System Concepts, TMH
2. Connolly and Begg: Database Systems: A practical approach to design, implementation and management, Pearson
Course Name: Wireless Sensor Networks
Course Code: CSEN514

Contact Hours Per Week
<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
After the completion of this course, students should be able to:
1. Understand the fundamental concepts of wireless sensor networks.
2. Understand the architecture of sensor nodes
3. Acquire basic knowledge and learn the protocols of various layers.
4. Be able to design and implement sensor networks for various application setups.
5. Evaluate the performance of sensor networks and identify bottlenecks
6. Be able to program sensor nodes as per requirement

Module I: Introduction (8L)
- Basic concepts of wireless sensor networks - Motivations, Applications, Performance metrics;
- History and Design factors;
- Architecture of a sensor node;
- Different sensing scenarios using WSN;
- Challenges in implementing WSNs;

Module II: Medium Access Control Protocol design (8L)
- Characteristics of WSN MAC related properties;
- MAC performance issues;
- MAC protocols for sensor networks – Schedule based and Random Access based.
- WSN protocols: synchronized, duty-cycled;
- Content based and Contention free MAC protocols;

Module III: Routing protocols for WSN (8L)
- Issues with the adoption of ad hoc routing protocols;
- Data-centric routing; Position-based / Geographic routing; Clustering-based routing algorithm, QoS based Routing Protocols.

Module IV: Advanced Topics (12L)
- Security requirements in WSNs; Different types of attacks in WNs; Security protocols for WSNs.
- Time Synchronization: Requirements and challenges; Basic Ideas; Various protocols;
- Coverage problem in WSNs: OGDC coverage algorithm; Placement problem;
- Topology management in WSNs: Different classifications relevant algorithms; Topology discovery, sleep-cycle management, and clustering;

Suggested Additional Topics:
- Introduction to Markov Chain: Discrete time Markov Chain definition, properties, classification and analysis; MAC Protocol Analysis using Markov chains;
- Sensor Network Programming: Node centric Programming; Macroprogramming; Dynamic reprogramming;
- Introduction to ns-3: Description of the ns-3 core module and simulation example.
- Opportunistic Routing Analysis: Analysis of opportunistic routing (Markov Chain)
- Real Life Deployment; Underwater Sensor Nodes vs Terrestrial Sensor Nodes;
- Power Management.

References:
Course Name: Digital Forensics
Course Code: CSEN5144

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
After the completion of this course, students should be able to:
1. Introducing basic concepts of digital forensic science
2. Exploring the specific areas of media, network and code forensics
3. Examining the role of digital forensics in public and private investigations
4. Examining the potential benefits, limitations and risks of digital forensics
5. Increasing awareness of managerial issues raised by the use of digital forensics
6. Enabling students to create disk images, recover deleted files and extract hidden information.
7. Introducing students to the current research in computer forensics. This will encourage them to define research problems and develop effective solutions.

Module 1: Introduction (8L)
- Understanding the Digital Forensics Profession and Investigations; Forensics science, computer forensics, and digital forensics;
- Processing Crime and Incident Scenes; analysis of cyber-criminalistics area, holistic approach to cyber-forensics;

Module 2: Cyber Crime Scene Analysis (10L)
- Understanding Storage Formats for Digital Evidence; Determining the Best Acquisition Method; Using Acquisition Tools: Linux Boot CD; Remote Network Acquisition; Understanding various acquisition tools;

Module 3: Details of Evidence Management and Presentation (8L)
- Determining the devices to be seized; Getting Location Description; Determining necessary tools; Processing an Incident or Crime Scene; Storing Digital Evidence; Managing Evidence; Obtaining a Digital Hash;
- Sample Criminal Investigation;

Module 4: Digital Forensics Analysis and Validation (10L)
- Approaching Digital Forensics Cases; Analyzing and Validating Forensic Data; Addressing Data-Hiding Techniques; Understanding Steganalysis Methods; Recovering Passwords;
- Network Forensics; Live Acquisition; Using Network Logs and Packet Analyzers;
- E-mail and Social Media Investigations;

Suggested Additional Topics:
- Mobile Forensics: mobile forensics techniques, mobile forensics tools.
- Recent trends in mobile forensic technique and methods to search and seizure of electronic evidence
- Working with Windows and CLI Systems for File System Recovery
- Understanding Graphic File formats and their recovery.

References:
1. File System Forensic Analysis, by Brian Carrier, Addison-Wesley
4. The Basics of Digital Forensics, John Sammons, Elsevier
Course Name: Computational Biology

Course Code: CSEN5145

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
1. To become familiar with the use of a wide range of biological databases and their applicability.
2. To understand the storage and retrieval methods of biological data from various biological databases.
3. To study structures of Genes, Molecule codes, DNA Structure.
4. To analyze various existing Graph Algorithms for DNA Sequencing and to compare among different DNA Sequences.
5. To explore different sequenced databases like FASTA, BLAST and evaluate their relevance with research problems.
6. To apply the learned methods to pertinent research problems in various domains.

Module I: (9L)
- Genes, Molecule codes, DNA Structure. DNA and Proteins. Analyzing DNA: copying, cutting and pasting, measuring, probing.

Module II: (9L)
- Dynamic Programming Algorithms: DNA Sequence Comparison, Edit Distance and Assignments, Longest Common Subsequence, Global Sequence Alignment, Scoring alignments, Local Sequence Alignment, Alignment with Gap Penalties, Multiple Penalties, Gene Prediction, Spliced Alignment.
- Divide and Conquer Algorithms. Sorting, Sequence Alignment, Four-Russians Speedup, Constructing alignments in sub-quadratic time.

Module III: (9L)

Module IV: (9L)

References:
Audit Course

<table>
<thead>
<tr>
<th>DIMA5116</th>
<th>Disaster Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCO5117</td>
<td>Constitution of India</td>
</tr>
<tr>
<td>PDL5118</td>
<td>Personality Development through Life</td>
</tr>
<tr>
<td>YOGA5119</td>
<td>Enlightenment Skills</td>
</tr>
<tr>
<td>SANS5120</td>
<td>Stress Management by Yoga</td>
</tr>
<tr>
<td></td>
<td>Sanskrit for Technical Knowledge</td>
</tr>
</tbody>
</table>

Course Name: Disaster Management

Course Code: CSEN5116

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Outcomes:

After the completion of this course, students should be able to:

1. learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
2. critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
3. develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
4. critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in.

Module I (6L)

Introduction on Disaster

- Introduction on Disaster - Disaster: Definition; Types of Disaster
- Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides etc.
- Man-made Disaster: such as Fire, Industrial Pollution, Nuclear Disaster, Biological Disasters, Accidents (Air, Sea, Rail and Road), Structural failures (Building and Bridge), War and Terrorism etc.
- Differences, Nature and Magnitude
- Factors Contributing to Disaster Impact and Severity - Repercussions of various types of Disasters Economic Damage; Loss of Human and Animal Life; Destruction of Ecosystem; Outbreaks of Disease and Epidemics; War and Conflict
- Natural Disaster-prone areas in INDIA - Areas prone to; Earthquake; Floods and Droughts; Landslides and Avalanches; Cyclonic And Coastal Hazards such as Tsunami;
- Lessons Learnt from Recent Disasters

Introduction to Disaster Management

- What is Disaster Management
- Different Phases of Disasters
- Disaster Management Cycles
- Disaster Management Components - Hazard Analysis; Vulnerability Analysis; Prevention and Mitigation; Preparedness; Prediction and Warning; Response; Recovery;
- Disaster Management Act, 2005
- National Disaster Management Structure
- Organizations involved in Disaster Management

Module -II (6L)

Overview on Hazard Analysis and Vulnerability Analysis

Disaster Preparedness

- Disaster Risk Assessment People’s Participation in Risk Assessment
• Disaster Risk Reduction
• Preparedness Plans
• Community preparedness: Emergency Exercises/Trainings/Mock Drills

Disaster Prediction and Warning
• Activities - Tracking of disaster; Warning mechanisms; Organizational response; Public education; Communication; Evacuation planning
• Current tools and models used for prediction and early Warnings of disaster - Application of Remote Sensing; Data From Meteorological and other agencies; Smartphone/ Web based Apps for Disaster Preparedness and Early Warning used in different parts of Globe

Module -III (6L)
Disaster Response
• Crisis Management: The Four Emotional Stages of Disaster - Heroic Phase; Honeymoon Phase; Disillusionment Phase; Reconstruction Phase
• Need for Coordinated Disaster Response - Search, Rescue, Evacuation, Medical Response and Logistic Management; Psychological Response and Management (Trauma, Stress, Rumor and Panic)
• Role of Government, International and NGO Bodies

Post-disaster Situation Awareness
• Need for Situation Awareness in Post Disaster scenario
• Challenges in communication of situational data from affected areas
• Need for community-driven disaster management for reliable situation awareness
• Crowd-sourcing of situational data: Issues and challenges

Post-disaster Damage and Need Assessment
• Current Trends and Practices – RAPID Damage and Need Assessment
• SPHERE standards in Disaster Response
• ICT based techniques for Post-disaster damage and need assessment

Module -III (6L)
Rehabilitation, Reconstructions and Recovery
• Reconstruction and Rehabilitation as a Means of Development.
• Post Disaster effects and Remedial Measures
• Creation of Long-term Job Opportunities and
• Livelihood Options
• Disaster Resistant House Construction
• Sanitation and Hygiene
• Education and Awareness
• Dealing with Victims’ Psychology
• Long-term Counter Disaster Planning

Disaster Mitigation
• Meaning, Concept and Strategies of Disaster Mitigation
• Emerging Trends in Mitigation
• Structural Mitigation and Non-Structural Mitigation
• Programs of Disaster Mitigation In India

References:
2. Sahni, Pardeep et.al. (Eds.),” Disaster Mitigation Experiences And Reflections”, Prentice Hall of India, New Delhi.
Course Name: Constitution of India
Course Code: INCO5117

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives

1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
2. To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes:

After the completion of this course, students should be able to:

1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.

Module I (8L)

- History of Making of the Indian Constitution: History, Drafting Committee, (Composition and Working)
- Philosophy of the Indian Constitution: Preamble, Salient Features

Module II (4L)

Module III (4L)

- Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

Module IV (8L)

- Local Administration: District’s Administration head: Role and Importance; Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation; Panchayati raj: Introduction, PRI: ZilaPanchayat; Elected officials and their roles; CEO ZilaPanchayat: Position and role; Block level: Organizational Hierarchy (Different departments); Village level: Role of Elected and Appointed officials, Importance of grass root democracy
- Election Commission: Election Commission: Role and Functioning; Chief Election Commissioner and Election Commissioners; State Election Commission: Role and Functioning; Institute and Bodies for the welfare of SC/ST/OBC and women.

References

1. The Constitution of India, 1950 (Bare Act), Government Publication.
Course Name: Personality Development through Life Enlightenment Skills
Course Code: PDLS5118

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Outcomes:
After the completion of this course, students should be able to:
1. Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
2. The person who has studied Geeta will lead the nation and mankind to peace and prosperity
3. Study of Neetishatakam will help in developing versatile personality of students.

Module I (6L)
Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride and heroism)
- Verses- 26,28,63,65 (virtue)

Module II (6L)
Approach to day to day work and duties.
- Verses- 52,53,59 (don’t’s)
- Verses- 71,73,75,78 (do’s)
- Shrimad Bhagwad Geeta : Chapter 2-Verses 41, 47,48,

Module III (6L)
Statements of basic knowledge.
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.
- Shrimad Bhagwad Geeta: Chapter 2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18

Module IV (6L)
Personality of Role model.
- Shrimad Bhagwad Geeta: Chapter 2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

References
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication 2. Department), Kolkata
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.
Course Name : Stress Management by Yoga
Course Code: YOGA5119

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives
4. To achieve overall health of body and mind
5. To overcome stress

Course Outcomes:
After the completion of this course, students should be able to:
5. Develop healthy mind in a healthy body thus improving social health also
6. Improve efficiency

Module I (6L)
- Definitions of Eight parts of yog. (Ashtanga)

Module II (6L)
Yam and Niyam.
Do’s and Don’t’s in life.
- Ahinsa, satya, astheya, bramhacharya and aparigraha
- Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

Module III (6L)
Asan and Pranayam
- Various yog poses and their benefits for mind and body

Module IV (6L)
- Regularization of breathing techniques and its effects-Types of pranayam

References
1. ‘Yogic Asanas for Group Training-Part-I’ : Janardan Swami Yogabhysai Mandal, Nagpur
2. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata
Course Name: Sanskrit for Technical Knowledge
Course Code: SANS5120

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives
1. To get a working knowledge in illustrious Sanskrit, the scientific language in the world
2. Learning of Sanskrit to improve brain functioning
3. Learning of Sanskrit to develop the logic in mathematics, science and other subjects
4. Enhancing the memory power
5. The engineering scholars equipped with Sanskrit will be able to explore the
6. Huge knowledge from ancient literature

Course Outcomes:
After the completion of this course, students should be able to:
1. Understanding basic Sanskrit language
2. Ancient Sanskrit literature about science and technology can be understood
3. Being a logical language will help to develop logic in students

Module I (6L)
- Alphabets in Sanskrit,
- Past/Present/Future Tense,

Module II (6L)
- Simple Sentences
- Order

Module III (6L)
- Introduction of roots
- Technical information about Sanskrit Literature

Module IV (6L)
- Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

References
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
Course Name: Advanced Data Structures Lab
Course Code: CSEN5151

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Outcomes:
At the end of this lab session, the student will
1. be able to design and analyze the time efficiency of various data structures
2. be capable to identity the appropriate data structure for a given problem
3. be able to write program with appropriate data structures for a given problem
4. have practical knowledge on the applications of data structures

A tentative outline for this laboratory is given below:
- Assignments on the application of array data structure to sort a set of elements using different sorting methods (e.g., bubble sort, insertion sort, selection sort)
- Assignments on the application of array data structure to search an element in a set of elements using different searching methods (e.g., linear search, binary search)
- Implementation of stack and queue using array and linked list data structures
- Assignments on the implementation of binary tree using array and linked list and traversal of the tree
- Implementation of hashing where collision resolution is done using open addressing method
- Implementation of KMP algorithm for pattern matching
- Application of one/ two data structures in real life applications

Course Name: Machine Learning Lab
Course Code: CSEN5181

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Outcomes:
At the end of this lab session, the student will be able to
1. write code the machine learning algorithm in C or Python.
2. understand and conceptualize the methods of machine learning and its applications.
3. design simple algorithms for pattern classification, code them with Python programming language and test them with benchmark data sets.
4. write program analyze and evaluate simple algorithms for pattern classification.
5. analyze and evaluate simple algorithms of estimation.

List of Experiments:
- Regression (single and Multiple Variables) linear and non-liner;
- Logistic regression
- Classifiers - K-NN; Naïve Bayes Classifier; Perceptron; Multi Layer Perceptron.
- Clustering Algorithms - K-Means; DB-Scan
- Familiarization with a few ML Tools Excel; WEKA; R; Python; TensorFlow
- Applications of ANN and SVM using ML tools
Course Name: Advanced Wireless and Mobile Networks Lab

Course Code: CSEN5182

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Outcomes:
1. The students should get familiar with the various network simulators like ns2 and QualNet.
2. To learn to model and simulate various network topologies
3. To learn how to evaluate MAC and network protocols using network simulation software tools.
4. To learn the methodology to develop new MAC and network protocols and simulate them in the network simulators.

Syllabus:
- Network Simulator (NS)
 - Installation of Network Simulator ns 2
 - Familiarization with ns 2
 - Learn programming in OTCL
 - Setup wired and wireless networks using existing protocols in OTCL
 - Observe the variation in the network performance of wireless ad hoc networks for various routing protocols
 - Observe the variation in the network performance of vehicular ad hoc networks for various routing protocols
- Real time network simulator Qualnet
 - Familiarization with the real time network simulator Qualnet.
 - Learn to setup wired and wireless networks, add applications, run scenarios, obtain results and analyze them.
 - Observe the variation in the network performance of wireless ad hoc networks for various routing protocols.
 - Observe the variation in the network performance of vehicular ad hoc networks for various routing protocols.

Course Name: Introduction to Intelligent Systems Lab

Course Code: CSEN5183

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Outcomes:
At the end of this course, students are expected to
1. get a good flavor of logical programming by using PROLOG/ LISP
2. apply that knowledge to solve some intelligent puzzles
3. learn to model simple intelligent systems
4. apply search algorithm in developing intelligent systems

In this laboratory students will be familiarized with PROLOG/ LISP language.
- Introduction to PROLOG facts and rules with the help of a simple family tree: how the goals are given in PROLOG; some simple queries on the family tree formation of recursive definition; how PROLOG executes the goals; simple assignments
- how PROLOG deals with problems with numbers – integers, real; with some examples
 - Introduction to LIST structure: how PROLOG implements LIST; some simple assignments on LIST
 - some more complex assignments on LIST
 - Introduction to CUT with simple assignments; implementation of sorting algorithms
 - implementation of graph search algorithms like DFS, BFS; Some application of BFS. DFS
 - Implementation of some well known puzzles, like 8-queens problem, Towers-of-Hanoi problem, Missionaries and Cannibals problem etc.
- Introduction to LISP
- Some simple assignments on LISP

References:
1. PROLOG Programming for Artificial Intelligence, Ivan Bratko, Pearson India.
Course Name : GPU Computing Lab
Course Code: CSEN5184

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Outcomes:
By attending the course, students would:
1. learn concepts in parallel programming,
2. gain the knowledge of implementation of programs on GPUs,
3. have skills for debugging and profiling parallel programs on CUDA.

Experiments will be conducted under Linux on any (say, ARCUS) GPU cluster. The header files (helper_cuda.h, helper_string.h) which come from the CUDA SDK will be used. They provide routines for error-checking and initialization.

- **Lab 1: Application**: a trivial "hello world" example
- **CUDA aspects**: launching a kernel, copying data to/from the graphics card, error checking and printing from kernel code
- **Lab 2: Application**: Monte Carlo simulation using NVIDIA's CURAND library for random number generation
- **CUDA aspects**: constant memory, random number generation, kernel timing, minimizing device memory bandwidth requirements
- **Lab 3: Application**: reduction
- **CUDA aspects**: dynamic shared memory, thread synchronization;
- **Lab 4**: Matrix-matrix operation (CUDA)
- **Lab 5**: Application: using the CUBLAS and CUFFT libraries
- **Lab 6**: Matrix-matrix operation via cuBLAS (CUDA)
- **Lab 7: Application**: tri-diagonal equations
- **Lab 8**: pattern matching
- **Lab 9 and Lab 10**: streams and OpenMP multithreading:

References:
2. CUDA Programming: A Developer's Guide to Parallel Computing with GPUs; Shane Cook; Morgan Kaufman
3. GPU Computing and Applications: Yiyu Cai, Simon See; Springer.
4. Web Link: https://people.maths.ox.ac.uk/gilesm/cuda/
Course Name: Image Processing Lab
Course Code: CSEN5185

<table>
<thead>
<tr>
<th>Contact Hours Per Week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Outcomes:
1. Students will learn to convert one image form to another image form.
2. Able to learn various kinds of image enhancement and image restoration techniques.
3. They will learn various techniques of image compression, image segmentation etc.

List of Experiments:
- Display of Grayscale Images.
- Histogram Equalization.
- Non-linear Filtering.
- Edge detection using Operators.
- 2-D DFT and DCT.
- Filtering in frequency domain.
- Filtering in spatial domain.
- Display of color images.
- DWT of images.
- Segmentation using watershed transform.
- Image Compression.
- Applications of image zooming and image shrinking etc.
M. Tech. Detailed Syllabus - Semester II

<table>
<thead>
<tr>
<th>Subject Name: Advanced Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Code: CSEN5201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:

After completion of the course, students would be able to:

1. Remember time complexities of various existing algorithms in different situations
2. Understand the basic principles of different paradigms of designing algorithms
3. Apply mathematical principles to solve various problems
4. Analyze the complexities of various algorithms
5. Evaluate the performance of various algorithms in best case, worst case and average case
6. Create/Design a good algorithm for a new problem given to him/her

Module I [9L]

- **Basic Concepts [3L]**: Review of basic data structures and algorithms, worst-case and average-case analyses, asymptotic complexity, Big-O, Big-Theta, Big-Omega and small-o notations and their properties, introduction to recurrences, suitable examples.

- **Sorting and Selection [4L]**: merge sort, quick sort, heap sort and their analysis; priority queues, lower bounds for comparison-based sorting, median and order statistics, selection of k-th largest element.

- **Searching [2L]**: Linear Search, Binary Search, Analysis in best case, worst case and average case.

Module II [9L]

- **Graph Algorithms [3L]**: Graph traversal algorithms: BFS and DFS; topological sorting of cycle-free graphs, strongly connected components.

- **Greedy Method [6L]**: Elements of the greedy strategy, fractional knapsack problem; Shortest Path Algorithms: Dijkstra’s and Bellman Ford with correctness proofs; Minimum cost spanning trees: Prim's and Kruskal's algorithms and their correctness proofs.

Module III [9L]

- **Algebraic Operations [2L]**: Integer multiplication, GCD computation using Euclid’s algorithm, polynomial evaluation, Strassen’s matrix multiplication algorithm.

- **Amortized Analysis [3L]**: Aggregate, Accounting and Potential Methods, Example problems.

Module IV [9L]

- **NP-completeness [3L]**: Informal concepts of deterministic and non-deterministic algorithms, P and NP, NP-completeness, Cook’s theorem, examples of NP-complete problems.

- **Approximation algorithms [3L]**: Necessity of approximation schemes, performance guarantee, Approximation algorithms for 0/1 knapsack, vertex cover, TSP.

- **Recent Trends [1L]**: Discussion on recent searching and sorting techniques by applying recently proposed data structures.

References:

3. D. E. Knuth: The Art of Computer Programming (2nd Ed or later), vol 1-3, Addison-Wesley
Course Outcomes:
After completion of course, students would be able to:
1. Learn (remember) and understand soft computing techniques and their roles in building intelligent machines.
2. Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering problems.
3. Design (create) methodology to solve optimization problems using genetic algorithms.
4. Analyze and evaluate solutions by various soft computing approaches for a given problem.
6. Develop intelligent systems leveraging the paradigm of soft computing techniques.

Module I: (L9): Introduction to Soft Computing and Fuzzy Logic

Module II: (L9): Neural Networks
 Introduction to Artificial Neural Network (ANN). Different ANN architectures, Traing techniques for ANNs (Supervised Learning Neural Networks, Radial Basis Function Networks, Unsupervised Learning Neural Networks, Self organizing map).

Module III (L9): Genetic Algorithms
 Introduction to Genetic Algorithms (GA), Binary coded GA, Real coded GA, Other coding methods, Non-dominated Sorted GA, Solving single-objective optimization problems using GAs.

Module IV (L9): Applications and Advanced Soft Computing tools
 Concept of multi-objective optimization problems (MOOPs) and issues of solving them, GAs to solve MOOPs, neural network in deep learning, Neuro-Fuzzy Hybrid system.

References:
2. Fuzzy Logic with Engineering Applications (3rd Edn.), Timothy J. Ross, Willey, 2010
5. Genetic Algorithms In Search, Optimization And Machine Learning, David E. Goldberg, Pearson Education, 2002
Course Outcome:
After completion of course, students would be able to
1. Acquire knowledge in a broad range of methods based on statistics and informatics for data preprocessing and analysis and tools for visualizing the main characteristics of data.
2. Understand the whole process line of gathering relevant data, preprocessing the data, performing exploratory analysis on the data and visualizing the implicit knowledge extracted from data.
3. Apply suitable methods for unveiling the underlying structure of the data, testing underlying assumptions in various fields.
4. Analyze the results of experiment with the help of various visualization tools and statistical tests.
5. Evaluate the performance of not only a computational method after obtaining different results by using different parameter values in order to choose the correct parameter value, but also, all similar methods in order to find out the best performing algorithm for a dataset.
6. Get familiar with relevant literatures, derive theoretical properties of the existing methods and come up with novel approach or pipeline for analyzing data across various fields by solving assignment problems.

Module I (7L): Data Gathering and Preparation
Data formats- Structured, semi-structured and unstructured data format; Parsing and transformation- Need of Parsing, Text markup language and parser, Extensible mark-up language and parser; Scalability- Goals of a scalable platform, when to scale your database, vertical scaling, read scaling; Real-time issues- Real-time event transfer, Real-time situation discovery, Real-time analytics, Real-time decision making, Real-time responses.

Module II (7L): Data Cleaning
Importance of data cleaning. Data quality dimensions (Accuracy, Completeness, Currency and Consistency); Classification of Data quality problems (Single-source and Multi-source problems)- Consistency checking, Heterogeneous and missing data; Data Cleaning Approaches: Data Transformation and segmentation.

Module III (15L): Exploratory Analysis
Descriptive statistics- Central Tendency, variation, shape; Comparative statistics- Parametric (Paired t-test, Unpaired t-test, Repeated measures ANOVA, One-way ANOVA, Pearson correlation) vs non-parametric tests (Wilcoxon- Signed Ranks test, Mann-Whitney test, Friedman test, Kruskal-Wallis test, Spearman correlation, Chi-Square test/ Fisher’s test); Clustering and association- Overview of clustering, distance metrics, k-means and hierarchical clustering; Hypothesis generation- Introduction, Null hypothesis, alternate hypothesis, Types of errors. Multiple testing- Methods for addressing multiple testing (Family wise error rate and False discovery rate).
Module IV (7L): Visualization
Designing visualizations- Steps in designing visualization, Problems in Designing Effective Visualization
Time series- Line Graph, Stacked Area Chart, Bar Chart, Gantt Chart, Stream Graph, Heat Map, Polar Area Diagram;
Geolocated data- Introduction spatial data, Point phenomena, line phenomena, area phenomena, Cartograms;
Correlations and connections- Marimekko chart, Parallel Coordinates plot, Radar chart, Venn diagram, bubble chart, heatmap, scatter plot, arc diagram, brainstorm, chord diagram, connection map, network diagram, non-ribbon chord diagram, tree diagram; Hierarchies and networks- Space and Non-space filling methods, Node-link graphs, Matrix representation of graphs; Interactivity- Interaction operators, Interaction operands and spaces.

References:
4. Visualizing Data: Exploring and Explaining Data with the Processing Environment, by Ben Fry, O’REILLY’.
COURSE OUTCOMES:
After completion of course, students would be able to
1. Understand methodologies and tools to design and develop secure software containing minimum vulnerabilities and flaws.
2. Study various issues like weak random number generation, information leakage, poor usability, and weak or no encryption on data traffic.
3. Know essential techniques for reducing and avoiding system and software security problems,
4. Evaluate various enterprise application design and development tools and standard practices.
5. Review techniques for successfully implementing and supporting network services on an enterprise scale and heterogeneous systems environment.
6. Solve enterprise scale problems emanating from lapses in security requirements and information system management practices.

Module 1:
Secure Software Design (10L)
Identify software vulnerabilities and perform software security analysis;
Exposure to security programming practices;
Basics of fundamental software security design concepts;
Perform security testing and quality assurance.
Domain Model for Security Risk Management;
Security Risk; Security Requirements and Metrics;
Security Modeling: Understanding security goals and business activities;
Designing secure system functions and behavior; Role-based access control;

Module 2:
Enterprise Application Development (8L)
Describe the nature and scope of enterprise software applications;
Explore technologies available for the presentation, business and data tiers of an enterprise software application;
Design and build a database using an enterprise database system;
Develop components at the different tiers in an enterprise system; Design and develop a multi-tier solution to a problem using technologies used in enterprise system.

Module 3:
Enterprise Systems Administration (8L)
Design, implement and maintain a directory-based server infrastructure in a heterogeneous systems environment;
Monitor server resource utilization for system reliability and availability;
Install and administer network services (DNS/DHCP/Terminal Services/Clustering/Web/Email).

Module 4:
Enterprise Network Infrastructure (10L)
Obtain the ability to manage and troubleshoot a network running multiple services, Understand the requirements of an enterprise network and how to go about managing them.
Handle insecure exceptions and command/SQL injection, Defend web and mobile applications against attackers, software containing minimum vulnerabilities and flaws.
Case study: DNS server, DHCP configuration and SQL injection attack.
References:
1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones and Bartlett
3. Principles of Secure Software Design: Dr. Raimundas Matulevičius
4. Architecting Applications for the Enterprise: Dino Esposito and Andrea Saltarello; Microsoft Press;
5. Enterprise Applications Administration: Jeremy Faircloth; Morgan Kaufmann publishers;
6. RedHat Linux Networking and System Administration: Terry Collings and Kurt Wall; Wiley Publishing;
7. SQL Injection Attacks and Defense: Justin Clarke; Elsevier Publishing;
COURSE OUTCOMES:
After completion of course, students would be able to:
1. Learn basic concepts, terminology, theories, models and methods in the field of image analysis and computer vision.
2. Learn and understand shape and region analysis.
3. Apply the vision technology in solving image processing and computer vision problems.
4. Identify the limitations of vision systems.
5. Develop skills to implement boundary detection and motion related techniques.
6. Design successful applications to process and analyze images.

Module I (8L):
Overview, computer imaging systems, lenses, Image formation and sensing, Image analysis, pre-processing and Binary image analysis, Edge detection, Edge detection performance, Hough transform, corner detection.

Module II (7L):
Fourier Transform, Segmentation, Morphological filtering.

Module III (10L):
Feature extraction, shape, histogram, color, spectral, texture, using CVIP tools, Feature analysis, feature vectors, distance /similarity measures, data preprocessing.

Module IV (11L):
Recent trends in Activity Recognition, Computational photography, Biometrics.

References:
Course Outcomes:
Students who complete the course will demonstrate the ability to do the followings:
1. Design and analyze Deterministic and non-deterministic finite state automata.
2. Understand the correspondence between finite state automata and regular languages.
3. Design context free grammars to generate strings from a context free language and convert them into Chomsky normal forms.
4. Design deterministic and non-deterministic push down automata to recognize context free languages.
5. Construct Turing machines for computable functions.
6. Understand the hierarchy of formal languages, grammars and machines.
7. Distinguish between computability and non-computability and Decidability and undecidability.

Module 1: (9 hours)
Finite State Machines. Basic definitions, state transition diagrams, state tables, Mealy model, Moore model, formal mathematical definition, input alphabet, input strings, concept of language. Recognition of a language by a finite state automaton. Examples of design of FSMs. Distinction between deterministic and non-deterministic automaton, conversion of a non-deterministic machine to deterministic form. Epsilon transitions and their elimination. Regular grammars and languages.

Module 2: (8 hours)
Regular Expressions. Definition and properties of regular expressions. Correspondence between regular expressions and finite state machines. Kleene’s Theorem. Types of Languages. The Pumping Lemma for Type 3 languages. Examples of languages that are not regular. Closure properties of regular languages. Decision properties of regular languages. Capabilities and limitations of FSMs. Applications of finite automata.

Module 3: (7 hours)

Module 4: (12 hours)

References
Course Outcomes:
Students who complete the course will demonstrate the ability to do the followings:
1. Know the common algorithms for solving well-known geometric algorithms.
2. Explain the major geometric algorithms and their analyses.
3. Apply a geometric problem or rather identify whether an algorithm for an existing geometric problem can be useful to solve the problem at hand.
4. Estimate the time and space required for implementing a geometric algorithm to solve a new problem.
5. Weigh between different geometric algorithms to solve a given problem.
6. Develop new algorithms for simple geometric problems.

Module-I:
Preliminaries: [4L]: Basic Euclidean geometry, Basic Visibility Problems, Polygons and Art Gallery Theorem, The Maximal Points Problem, The Plane Sweep Technique and applications (Segment Intersection Problem and Rectangular Union)
Convex Hull Different Paradigms [4L]: Gift wrapping, Quickhull, Graham scan, Incremental algorithm, Preparata-Hong algorithm

Module-II:
Point Location and Triangulation [4L]: Planar Point Location, Triangulation of Arbitrary Polygon, Kirkpatrick's method, trapezoidal decompositions and analysis, history DAGs
Persistent Data Structures.

Module-III:
Range Searching [6L]: Introduction, Orthogonal Range searching, Priority Search Trees (kd-trees, range trees and range searching, segment trees), Non-Orthogonal Range Searching, Half-Plane Range Query, Well Separated Partitioning, Adding range restrictions. Colored Range Searching
Arrangements and Duality [3L]: Point/line duality, incremental construction of arrangements and the zone-theorem, applications.

Module-IV:
Geometric Approximation [4L]: Dudley's theorem and applications, well-separated pair decompositions and geometric spanners, VC dimension, epsilon-nets and epsilon-approximations
Isotthetic Geometry [3L]: Generation, Decomposition and Analysis of the Isothetic Polygon.
Matrix Searching [2L]: Concepts and its applications in different geometric optimization problems. Few applications in GIS and robot motion planning, and physical design in VLSI.

Textbooks / References:
5. Computational Geometry Lecture Notes, David M. Mount, Department of Computer Science, University of Maryland, Fall 2002
<table>
<thead>
<tr>
<th>Subject Name: Human and Computer Interaction</th>
<th>Paper Code: CSEN5241</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Hours per week</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
After completion of course, students would be able to:
1. Understand the structure of models and theories of human computer interaction.
2. Identify basic concepts, terminology, theories, models and methods in the field of Human Computer Interaction.
3. Understand basics of interactive designing, how to prototype, iterate and refine based on the standard principles and guidelines.
4. Understand the socio organizational issues in cognitive models. Be able to identify the key players and their requirements.
5. Understand how users interact with mobile apps and widgets and design such mobile ecosystems.
6. Design an interactive web interface based on the different models studied.

Module I (7L):

Module II (11L):

Module III (7L):
Cognitive models – Socio-Organizational issues and stake holder requirements – Communication and collaboration models-Hypertext, Multimedia and WWW.

Module IV (11L):

References:
Course Name: Graph Algorithms

Course Code: CSEN5242

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Learning Objective: The main objective of the course is for students to learn some classical theorems and algorithms in this domain. It is expected that students will be able to demonstrate their knowledge of algorithms by solving concrete problems. In addition, students will be able to prove some simple facts and theorems about graphs and graph algorithms.

Course Outcomes:
Students who complete the course will demonstrate the ability to do the followings:
1. Learn the advanced concepts and key features of Graph algorithms.
2. Understand the algorithmic approach to Graph related problems.
3. Explain and analyze the major graph algorithms.
4. Employ graphs to model engineering problems, when appropriate.
5. Defend and argue the application of the specific algorithm to solve a given problem.
6. Synthesize new algorithms that employ graph computations as key components, and analyze them.
7. Hypothesize for a critical problem, where graph is involved as an absolutely necessary component.

Module I:
Connected components and transportation related graph problems
- Representation of graphs, Sub graphs, Degree Sequences, Connectivity, Cut-Vertices and Bridges, Digraphs. [1L]
- Depth First Search, DFS for undirected graphs, non-separable components and directed graphs. Topological Sorting. Strongly connected components, Tarjan’s algorithm for strongly connected components. [2L]
- Hamiltonian graphs and travelling salesman problem. Exponential-time dynamic programming for the TSP, approximation algorithms and the approximation ratio, MST-doubling heuristic, Christofides' heuristic. [4L]

Module II:
Flow networks and Bipartite graphs
- Max flow min cut theorem, max flow algorithms and their applications. [2L]
- Min cost max flow algorithm, their applications. [2L]
- Bipartite graphs, formulating bipartite maximum matching as a flow problem. [1L]

Matching and covering related graph problems
- Matchings, stable marriage problem, Gale-Shapley algorithm for stable marriage problem. [2L]
- Hopcroft–Karp algorithm. Using matchings to find vertex covers and independent sets. [2L]

Module III:
Graph Coloring, Planarity and longest path
- Graph coloring, greedy coloring, Maximal clique [2L]
- Brooks theorem, the greedy algorithm, the Welsh-Powell bound, critical graphs, chromatic polynomials, girth and chromatic number, Vizing’s theorem. [2L]
- Introduction to planarity of the graph, duality of the planar graph and max cut of the planar graph. Euler’s formula, Kuratowski’s theorem, toroidal graphs, 2-cell embeddings, graphs on other surfaces. [4L]
- Longest path Problem, hardness and heuristic for solution. [1L]

Module IV:
Random graphs and Selected topics
- Random graphs and probabilistic methods. [2L]
- Dominating sets, the reconstruction problem, intersection graphs, interval graphs, perfect graphs, Chordal graphs. [3L]
- Maximum Clique-Minimum coloring problem in interval graph. [2L]
- Algorithms for independent set, clique and vertex coloring in Chordal graphs. [2L]

Text Books
2. Graph Theory and Its Applications Jonathan L. Gross and Jay Yellen
3. Algorithm Design - Jon Kleinberg and Eva Tardos
4. Advanced graph algorithms, T.kloks

Reference Books
COURSE OUTCOMES
Students who complete the course will demonstrate the ability to do the followings.
1. Identify the architecture and infrastructure of cloud computing, including SaaS, PaaS, IaaS, public cloud, private cloud, hybrid cloud.
2. Describe the core issues of cloud computing such as security, privacy, and interoperability to choose the appropriate technologies, algorithms, and approaches for the identified problems.
3. Analyze various cloud computing solutions.
4. Evaluate cloud Storage systems and Cloud security, the risks involved, its impact.
5. Apply knowledge for solving real life cloud computing problem scenario and illustrate solutions.
6. Develop appropriate cloud computing solutions and recommendations according to the applications used.

Module-1: [9L]
 • Defining a Cloud, Cloud Types – NIST Cloud Reference Model, Cloud Cube Model, Deployment Models (Public, Private, Hybrid and Community Clouds), Service Models – Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS)
 • Characteristics of Cloud Computing – a shift in paradigm
 • Benefits and Advantages of Cloud Computing
b. Concepts of Abstraction and Virtualization [4L]:
 • Virtualization: Taxonomy of Virtualization Techniques
 • Hypervisors: Machine Reference Model for Virtualization

Module-2: [9L]
a. Services and Applications by Type [6L]:
 • IaaS – Basic Concept, Workload, Partitioning of Virtual Private Server Instances, Pods, Aggregations, Silos
 • PaaS – Basic Concept, Tools and Development Environment with examples
 • SaaS - Basic Concept and Characteristics, Open SaaS, examples of SaaS Platform
 • Identity as a Service (IDaaS)
 • Compliance as a Service (CaaS)

Module-3: [9L]
a. Cloud-based Storage [4L]:
 • Cloud File Systems, including GFS and HDFS
b. Cloud Security [2L]:
 • Cloud security concerns, security boundary, security service boundary
 • Overview of security mapping
 • Security of data: cloud storage access, storage location, tenancy, encryption, auditing, compliance
 • Identity management (awareness of identity protocol standards)
 • Risk Management and Compliance
c. Cloud Management [3L]:
 • An overview of the features of network management systems and a brief introduction of related products from large cloud vendors, monitoring of an entire cloud computing deployment stack – an overview with mention of some products
 • Lifecycle management of cloud services (six stages of lifecycle)
 • Cloud service QoSs and maintenance
Module-4: [9L]

- **Google Web Services [2L]:** Discussion of Google Applications Portfolio – Indexed Search, Adwords, Google Analytics, Google Translate, A Brief Discussion on Google Toolkit (including introduction of Google APIs in brief), Major Features of Google App Engine Service

- **Amazon Web Services [2L]:** Amazon Web Service Components and Services: Amazon Elastic Cloud, Amazon Simple Storage System, Amazon Elastic Block Store, Amazon SimpleDB and Relational Database Service

- **Microsoft Cloud Services [2L]:** Windows Azure Platform: Microsoft’s Approach, Architecture, and Main Elements, Overview of Windows Azure AppFabric, Content Delivery Network, SQL Azure, and Windows Live Services

- **Webmail Services [1L]:** Cloud Mail Services, including Google Gmail, Windows Live Hotmail, Yahoo Mail

- **Advanced topics in Cloud Computing[2L]:** Cloud Federation- Definition, popular scenario description, Replacability and Negotiation Mechanism

Text Books:

References:
1. Cloud Computing (2nd Edition) by Dr. Kumar Saurabh, Wiley India
2. Cloud Computing for Dummies by Judith Hurwitz, R. Bloor, M. Kanfman, F. Halper (Wiley India Edition)
4. Cloud Security by Ronald Krutz and Russell Dean Vines, Wiley-India
COURSE OUTCOMES
Students who complete the course will demonstrate the ability to do the followings.
1. Understand physical design automation, optimization techniques and data structures inside modern VLSI tools.
2. Understand how to decompose large mapping problem into pieces, including logic optimization with partitioning, placement and routing.
3. Know how to place the blocks and how to partition the blocks while for designing the layout for IC.
4. Solve the performance issues in circuit layout.
5. Analyze physical design problems and Employ appropriate automation algorithms for partitioning, floor planning, placement and routing.
6. Evaluate circuits using both analytical and CAD tools.

Module I: (10L)
Preliminaries (Data Structures and Basic Algorithms)
Data structures for Representation of Graphs, Breadth First Search, Depth First Search, Topological Sort, Spanning Tree Algorithm - Kruskal’s and Prim’s, Shortest path Algorithm - Dijkstra’s Algorithm for single pair Shortest path, Floyd-Warshall algorithm for All pair Shortest path, Min cut and Max cut Algorithms

Model II: (8L)
Partitioning: Simulated Annealing, Kernighan-Lin Partitioning Algorithm, FiducciaMattheyses Algorithm. (3L)
Floor planning and Pin Assignment: Introduction, Problem Definition, Approaches to Floor planning (timing driven, Simulated Evolution, Hierarchical Tree Based, Pin assignment, Chanel assignment), Other Approaches and Recent Work. (5L)

ModuleIII: (8L)
Placement
Circuit Representation, Wire-length Estimation, Types of Placement Problem, Placement Algorithms – Constructive Placement, Iterative Improvement, Simulation Based Placement Algorithms, Partitioning Based Placement Algorithms, Other Placement Algorithms like cluster growth, Branch-and-Bound Technique

Module IV: (10L)
Global Routing
Problem Formulation, Classification of Global Routing Algorithms, Maze Routing Algorithm – Lee’s Algorithm, Line-Probe algorithm, Steiner Tree based Algorithm. (5L)
Detailed Routing: Area Routing, Channel Routing – Channel Routing Model, Vertical and Horizontal Constraint Graph, Left edge Algorithm, Robust Channel Routing Algorithm (5L)

References:
2. S. M. Sait and H. Yousuf, Iterative Computer Algorithm with Applications in Engineering, Wiley/IEEE, 2002
Learning Objective
The objective of this course is enhancing students' understanding of the physical world, knowing and communicating their relation to places in that world, and navigating through those places. Students will learn how to collect, analyze, and visualize large-scale spatial datasets while avoiding common pitfalls and building better data-intensive applications and location-aware technologies. Students will also gain a deep understanding about the fundamental research questions in individual disciplines and cross-cutting research questions requiring novel, multidisciplinary solutions.

Course Outcomes:
Students who complete the course will demonstrate the ability to do the followings.
1. Learn the relevant Geographic Information Systems and techniques for working with geospatial data.
2. Understand how Semantic Web technology fits into the present and future evolution of GIS, and how it differs from existing data-sharing technologies, such as relational databases and the current state of the World Wide Web.
3. Explain use of Geospatial libraries to solve real-world problems with greater flexibility.
4. Employ Volunteered Geographic Information and understand how it relates to Big Geospatial Data and GIS design.
5. Recognize methods to geocode text data.
6. Synthesize and hypothesize relevant Spatial Informatics techniques to solve a variety of spatial problems.

Module 1 (9L)
Introduction and Overview of Geographic Information Systems. (4L)
Definition of a GIS, features and functions; why GIS is important; how GIS is applied; GIS as an Information System; GIS and cartography; contributing and allied disciplines; GIS data feeds; historical development of GIS.
GIS and Maps, Map Projections and Coordinate Systems (5L)
Maps and their characteristics (selection, abstraction, scale, etc.); automated cartography versus GIS; map projections; coordinate systems; precision and error.

Module 2 (9L)
Data Sources, Data Input , Data Quality and Database Concepts (5L)
Major data feeds to GIS and their characteristics: maps, GPS, images, databases, commercial data; locating and evaluating data; data formats; data quality; metadata. Database concepts and components; flat files; relational database systems; data modeling; views of the database; normalization; databases and GIS.
Spatial Analysis (4L)
Questions a GIS can answer; GIS analytical functions; vector analysis including topological overlay; raster analysis; statistics; integrated spatial analysis.

Module 3 (9L)
Making Maps (5L)
Parts of a map; map functions in GIS; map design and map elements; choosing a map type; producing a map formats, plotters and media; online and CD-ROM distribution; interactive maps and the Web.
Implementing a GIS (4L)
Planning a GIS; requirements; pilot projects; case studies; data management; personnel and skill sets; costs and benefits; selecting a GIS package; professional GIS packages; desktop GIS; embedded GIS; public domain and low-cost packages.
Module 4 (9L)
Spatial Informatics (5L)
Mathematical concepts (e.g. Euclidean space, topology of space, network space), Geo-information models (e.g. field-based, object-based), Representations (e.g. discretized, spaghetti, tessellation, voronoi diagram), Algorithms (e.g. metric and Euclidean, topological, set-based, riangulation, graph-based), Data Structures and access methods (e.g. space filling curves, quad-trees, R-tree), Analysis (e.g. spatial query languages, spatial statistics, spatial data mining).

Location based services (4L)

Text Book:

References:
Course Outcomes/Learning Objectives:

- On completion this course, students are expected to be capable of understanding basic ability to analyze algorithms and to determine algorithm correctness and time efficiency class.
- Beside this students should be able to understand basic features of different algorithm design paradigms like divide and conquer, greedy, dynamic programming etc.
- Last but not the least, students will be able to apply and implement learned algorithm design techniques and data structures to solve various real life problems.

In this laboratory Students should run all the programs using C programming language on LINUX platform and then estimate the running time of their programs in best, worst and average case situations for large dataset.

A tentative outline of the laboratory is given below:

- Divide and Conquer: Find Maximum and Minimum element from a array of integer using Divide and Conquer approach
- Divide and Conquer: Implement Quick Sort using Divide and Conquer approach. Check the running time for different positions of pivot elements. Implement the randomized version of quick sort
- Dynamic Programming: Find the minimum number of scalar multiplication needed for chain of Matrices
- Implement Single Source shortest Path for a graph (Dijkstra and Bellman Ford Algorithm)
- Dynamic Programming: Implement all pair Shortest path for a graph (Floyd-Warshall Algorithm)
- Greedy method: implement fractional Knapsack Problem, MST by Prim’s algorithm
- Greedy method: Implement MST by Kruskal’s algorithm by using Union operation on Disjoint data Structures.
- Graph Traversal Algorithm: Implement Depth First Search (DFS), application of DFS (do topological sorting, identify strongly connected components)
- Implement KMP algorithm for string matching
- Implement Ford-Fulkerson algorithm to get maximum flow of a given flow network.

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Subject Name: Soft Computing Lab
Paper Code: CSEN5252

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

COURSE OUTCOMES
- An understanding of fundamental concepts and methods of machine learning and its applications.
- An ability to analyze and evaluate simple algorithms for pattern classification.
- An ability to design simple algorithms for pattern classification, code them with Python programming language and test them with benchmark data sets.

A tentative outline of the laboratory is given below:
1. Introduction to Matlab/Python, Arrays and array operations, Functions and Files.
 Familiarization with a few ML Tools such as Excel, WEKA, R, Python and TensorFlow
2. Study of neural network toolbox and fuzzy logic toolbox.
3. Simple implementation of Artificial Neural Network and Fuzzy Logic
4. Implementation of latest soft computing techniques using one of the above tools.
5. Regression (single and Multiple Variables) linear and non-liner;
6. Logistic regression
7. Classifiers: K-NN, Naïve Bayes Classifier, Perceptron, Multi Layer Perceptron
8. Clustering Algorithms: K-Means, DB-Scan
9. Applications of ANN and SVM using ML tools
M. Tech. Detailed Syllabus - Semester III

Professional Elective V

<table>
<thead>
<tr>
<th>CSEN6131 – CSEN6139</th>
<th>Professional Elective V</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSEN6131</td>
<td>Mobile Applications and Services</td>
</tr>
<tr>
<td>CSEN6132</td>
<td>Compiler for HPC</td>
</tr>
<tr>
<td>CSEN6133</td>
<td>Computational Complexity</td>
</tr>
<tr>
<td>CSEN6134</td>
<td>Fault Tolerant Computing</td>
</tr>
<tr>
<td>CSEN6135</td>
<td>Approximation Algorithms</td>
</tr>
<tr>
<td>CSEN6136</td>
<td>Randomized Algorithms</td>
</tr>
<tr>
<td>CSEN6137</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>CSEN6138</td>
<td>Social Network Analysis</td>
</tr>
<tr>
<td>CSEN6139</td>
<td>Quantum Computing</td>
</tr>
</tbody>
</table>

Subject Name: Mobile Applications and Services
Paper Code: CSEN 6131

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:

1. Understand the methodology and syntax of implementing applications for mobile devices working in the Android and iOS Platform
2. Understand the concept of RESTful and Non-RESTful apps
3. Create and Incorporate Web/Cloud Services
4. Understand the working of Mobile Sensors and develop apps to interact with them
5. Learn Security and Trust Management
6. Develop the understanding of Privacy and Ethics

Module I: Introduction to the Mobile Device Architecture and Android Architecture (9L)

Module II: Introduction to MAC and iOS Architecture (9L)
A History of iOS and Mac Development. Xcode and iOS Architecture. iOS App Components.

Module III: Data Management and Sensors (9L)

Module IV: User Interface (9L)
References:
11. https://material.io/design/introduction/#
Subject Name: Compiler for HPC

<table>
<thead>
<tr>
<th>Paper Code: CSEN6132</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Hours per week</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcome:
After completion of the course, students would be able to:
1. Remember the basic concepts of code generation and machine independent optimizations.
2. Learn various scheduling techniques and register allocation for exploiting Instruction Level Parallelism.
3. Be familiar with some well-known memory locality optimizations and demonstrate their understanding of locality optimization in different algorithms.
4. Apply the concept and compiler techniques for exploiting Data Level Parallelism.
5. Estimate the scope and level of parallelism in any application.
6. Design new basic block scheduling algorithms for data dependence graph applying the concept gained from the course.

Module-I (8L)

Module-II (10L)
Instruction level parallelism: Processor architectures; Code scheduling constraints: data dependence, Control dependence; Basic block scheduling: Data dependence graph, List scheduling of basic blocks, Prioritized Topological orders; Global code scheduling: Primitive, upward, and downward code motion; Introduction to Global scheduling algorithms; Software pipelining: Software pipelining of loops, Scheduling acyclic and cyclic data dependence graphs.

Module-III (8L)
Memory hierarchy of a computer and its optimization: reducing fragmentation. Basic introduction to garbage collection: reachability, Reference counting garbage collectors; Introduction to trace-based collector: a basic Mark-and-Sweep collector, Optimizing Mark-and-Sweep; Mark-and-Compact garbage collector; Parallel and concurrent garbage collection; Partial object relocation.

Module-IV (10L)
Optimizing for parallelism and locality: Multiprocessors and parallelism in applications, Loop-level parallelism, Data locality. Optimization issues in Matrix multiplication algorithm, Different types of Data reuses; Identification of Synchronization-free parallelism; Synchronization between parallel loops; Pipelining: basic introduction, Parallelism with minimum synchronization; Locality optimization: Temporal locality of computed data, Partition interleaving.

References
1. Compilers: principles, techniques, and tools - Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Pearson Education.
2. Advanced compiler design implementation - Steven S. Muchnick.
Subject Name: Computational Complexity

Paper Code: CSEN6133

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
Students who complete the course will demonstrate the ability to do the followings.

1. Learn and understand the fundamentals of various notions in computational complexity theory to classify computational problems.
2. Understand the important complexity classes, relationship among themselves, and some typical problems in the field.
3. Understand and explain the techniques used in analysis of computational complexity.
4. Classify decision problems into appropriate complexity classes such as P, NP, PSPACE and complexity classes based on randomized machine models.
5. Gain the concept to classify optimization problems into appropriate approximation complexity classes.
6. Apply complexity theory and the concept of interactive proofs in the analysis of optimization problems in different domains.

Module-I (10L)
Computational Models: Problems, Computability, Algorithms, and Complexity; Introduction to P and NP; Review of Turing machines and universal Turing machines; Turing machines Logic (Boolean logic, circuits).

Module-II (10L)
P, NP, coNP, and NP-Completeness; P vs. NP, NP vs. coNP; NP-completeness of SAT and other problems; Search vs. decision and self-reducibility, Complexity classes (hierarchy theorem, P, NP, Co-NP); Reduction and completeness.

Module-III (8L)
Interactive proof systems; Polynomial hierarchy; Diagonalization: Time/space hierarchy theorems; Ladner's theorem; Space complexity: PSPACE and PSPACE-completeness; NL and NL-completeness.

Module-IV (8L)
Randomized computation: Basic concept, Definitions and relation among the randomized classes RP, coRP, PP, BPP; Relation of BPP to the polynomial hierarchy and non-uniform computation; Nondeterministic Space Classes: Logarithmic space; Polynomial space, Savitch’s Theorem; Exponential time and space. A PSPACE complete problem- quantified Boolean formula problem (QBF).

References

Course Outcomes:

Students who complete the course will demonstrate the ability to do the followings:
1. understand reliability and fault tolerance in electronic system.
2. understand different types of defects, faults, errors and hazards.
3. know how to create a stochastic modeling of failure / hazard.
4. solve the faults / hazards.
5. analyze reliability modeling of redundancy systems.
6. evaluate reliability, availability, serviceability or real time systems.

Module I: Preliminaries (Data Structures and Basic Algorithms) (9L)
Principles of Fault Tolerance; Reliability Requirements; Hardware F-T Techniques; System Abstractions; Software Structuring Schemes;

Module II: (9L)
Techniques for Different Stages of Fault Tolerance; Techniques for Different Types of Faults;

Module III: (9L)
Fault Tolerance in Distributed Systems; Fundamental Problems in Coordination; Communication and Remote Operation over Unreliable Channels; Fault Tolerant Control and Coordination Algorithms Design;

Module IV: (9L)
F-T System Abstractions/Functions; System Mechanisms for F-T; Fault Tolerant Programming Paradigms; Modeling and Analyzing F-T Distributed Systems.

References:
Subject Name: Approximation Algorithms

Paper Code: CSEN6135

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes:
On completion of this course, students would be able to:
1. Remember the approach of designing different approximation algorithms to solve various hard problems.
2. Analyze a given real life problem to determine its hardness, and then define an approximation algorithm for it.
3. Learn the limits of approximation and the basic ways of proving hardness of approximation.
4. Choose appropriate approximation algorithms and use it for a specific hard problem.
5. Hypothesize for a critical problem, where graph is involved as an absolutely necessary component.
6. Gather some knowledge about the recent developments in the area of approximation algorithmic design.

Module 1 (9L)

Module 2 (9L)

Module 3 (9L)
Approximate covering and packing, set cover, vertex cover, independent set. Approximation algorithms for highly connected subgraphs. Weighted and unweighted vertex connectivity. Weighted and unweighted edge connectivity. Strong connectivity.

Module 4 (9L)
Approximation Algorithms for Geometric problems. Euclidean TSP, Steiner tree problems, Steiner ratio, Minimum weight triangulation with Steiner points, Clustering, K-minimum spanning tree, polygon separation, point set separation. Hardness of approximations. Inapproximability results. PCP theorem. PCP and inapproximability of MAX-3SAT.

Text Books:
1. Approximation Algorithms by Vijay Vazirani. (Springer, 2001)
Course Outcomes:

After completion of the course, students would be able to:
1. Remember the basic concepts of probability calculus in algorithmic context and apply the probabilistic method to show the existence of certain combinatorial objects.
2. Demonstrate their understanding of algorithmic randomization for a given problem.
3. Understand and use suitable mathematical tools to design randomized algorithms and analyze their performance.
4. Calculate proper upper bounds for the expected running time of simple randomized algorithms.
5. Estimate how a randomized algorithm performs asymptotically better than the best known exact deterministic algorithms for that problem.
6. Design simple randomized algorithms that run fast or that return the correct output with high probability.

Module 1 (9L)

Module 2 (9L)
Searching: Skip Lists.

Module 3 (9L)
Randomized Incremental Construction. Randomized Data Structures for dynamic data.
Randomized Graph Algorithms.

Module 4 (9L)

Text Book:

References:
Course Name: Information Retrieval
Course Code: CSEN6137

<table>
<thead>
<tr>
<th>Contact hrs per week:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
The objective of the course is to introduce information retrieval models and query languages. Application of web search and information retrieval in social networks is also included.

Course Outcomes:
After completion of course, students would be able to:
1. Identify basic theories and analysis tools as they apply to information retrieval.
2. Develop understanding of problems and potentials of current IR systems.
3. Learn and appreciate different retrieval algorithms and systems.
4. Apply various indexing, matching, organizing, and evaluating methods to IR problem
5. Be aware of current experimental and theoretical IR research.
6. Analyze and design solutions for some practical problems.

Module I: (9L)
Information retrieval model, Information retrieval evaluation; Document Representation – Boolean Model, Posting Lists, Inverted Indices, Skip Lists; Query languages and query operation – proximity search, Phrase Queries Metadata search; Tolerant Retrieval – B-Trees, Permuterm Index, Edit Distance – Different variations

Module II: (9L)
Indexing Construction and Searching – BSBI, SPIMI, Heap’s Law Zipf’s Law; Scoring and ranking feature vectors, tf-idf various schemes; Evaluation and computations of scores and ranked retrieval; Relevance feedback

Module III: (9L)
Text and multimedia languages, Language Models – Query Likelihood Models; Text Classification and Naive Bayes – Bernoulli model, feature selection; Vector Space Classification – kNN, Rocchio Classification

Module IV: (9L)

References:
Course Outcomes:
1. Students should be able to demonstrate basic knowledge of social networks and related application-oriented models.
2. Students should be able to understand applications of graph algorithms in social networks.
3. Students should be able to write programs to implement the related social network analysis algorithms when necessary.
4. Students should be accustomed to various network related libraries (in Python/Java/R/C++) to implement social network theories.
5. Students will get an exposure to the present state-of-the-art algorithms and methods in the area of social networks.
6. Exposure to the state-of-the-art algorithms should help the students in pursuing research in areas related to social networks.

Module I. Introduction [9L]
Motivating challenges in analysing social networks. (1L)
Measures and Metrics (4L): Degree centrality, Eigenvector centrality, Katz centrality, PageRank, hubs and authorities (HITS), closeness centrality, betweenness centrality, groups of vertices, transitivity, reciprocity, signed edges and structural balance, similarity, homophily and assortative mixing
Large Scale Structure of Networks (4L):
Components, shortest paths and the small world effect, degree distributions, power laws and scale-free networks, distributions of centrality measures, clustering coefficients

Module II. Random Networks [9L]
Understanding mean number of edges, mean degree, degree distribution, clustering coefficient, giant component, small components, and average path lengths for the following models:
Erdos-Renyi Network (3L); Small-world networks and Watts-Strogatz model (3L); Preferential attachment and Barabasi-Albert model (3L)

Module III. Propagation of Information in Networks [6L]

Module IV. Community Detection [12L]
What is a community? Notion of disjoint and overlapping communities. Goodness measures – modularity. Benchmarks and comparing with the benchmarks (F-measure, NMI, Omega index) (2L)
Strength of weak ties and related models. (1L); Clique Percolation model (1L); Modularity maximization, Clauset-Newman-Moore (CNM) method, Louvain Method (3L); Label propagation algorithm and its variants (2L); Random walks, Entropy-based method: Infomap (2L); Community preserving sparsification of social networks (1L)

Text Books:

Reference Books:
1. Networks, Crowds and Markets: Reasoning About a Highly Connected World by David Easley and Jon Kleinberg.
Course Outcomes:
Students who complete the course will demonstrate the ability to do the followings.
1. Understand the major mathematical representations of quantum operations,
2. Distinguish between classical and quantum computation
3. Describe a few key applications of quantum computing
4. Implement basic quantum algorithms,
5. Explain quantum decoherence in systems for computation,
6. Understand and describe quantum information concepts
7. Identify key aspects of quantum supremacy over conventional computation.

Module I: (9 L)
Introduction and Overview: Brief history and postulates of quantum theory; Recapitulation of the basic principles of classical computation; Dirac Notation, Probability amplitudes.
Quantum Mechanics: Superposition and wave function collapse; Qubits; Quantum measurements – Positive operator valued measures and Projective measurements; Heisenberg’s Uncertainty principle; Brief discussion on the difference between classical and quantum probability.

Module II: (9L)
Linear Algebra and Hilbert Spaces: Basis vectors- Orthogonal and Orthonormal vectors; Inner product spaces, Completeness and Separable Hilbert spaces; Unitary operations and Projectors; Tensor Products.
Fundamental quantum notions: No-cloning theorem; Quantum entanglement; Quantum nonlocality – Bell’s inequality.

Module III: (11L)
Quantum Circuits: Pauli and Hadamard gates; Phase, CNOT, Toffoli gates; Universal Quantum gates; Prototype examples - Quantum Teleportation and super dense coding; Reversible computing.
Quantum Algorithms: Deutsch-Josza algorithm; Simon’s problem; Quantum Fourier transform; Shor’s period-finding algorithm; Grover’s algorithm for searching; Basic quantum cryptography - BB84 and E91 protocol.

Module IV: (7L)
Quantum Computers: Physical qubits; Noise and Decoherence
Basic aspects of quantum information theory: Shannon and von-Neumann entropy; Conditional entropy, relative entropy and Mutual information

References:

Lecture Notes:
1. John Preskill’s lecture notes: http://www.theory.caltech.edu/people/preskill/ph229/
Open Elective

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSEN6121</td>
<td>Business Analytics</td>
</tr>
<tr>
<td>ECEN6122</td>
<td>Design of Embedded Systems</td>
</tr>
<tr>
<td>INFO6123</td>
<td>Information Theory and Coding</td>
</tr>
<tr>
<td>ECEN6124</td>
<td>Automation in VLSI Design</td>
</tr>
<tr>
<td>MATH6121</td>
<td>Optimization Techniques</td>
</tr>
<tr>
<td>AEIE6122</td>
<td>Intelligent Control</td>
</tr>
</tbody>
</table>

Please refer to the “M Tech 3rd Sem Open Electives” document for detail syllabus.